- 博客(202)
- 收藏
- 关注
原创 2026年国产时序数据库盘点-深入剖析融合多模架构
它并非“万能钥匙”,但对于那些业务逻辑复杂、数据形态多样、且对事务一致性与系统整合有高要求的企业级用户而言,提供了一个能够将时序数据能力平滑、稳健地嵌入到现有企业数据核心中的优秀选择,体现了国产基础软件在架构设计上的深度思考与务实创新。在众多专注于时序场景极致优化的产品中,金仓数据库的时序组件选择了一条独特的路径:不追求做一个孤立的专用时序引擎,而是作为其强大的融合数据库体系(KES)中的一个版块。未来,随着AI for Data、实时智能分析的普及,时序数据库的“智能”与“融合”能力将愈发关键。
2026-01-18 14:11:14
16
原创 摆脱局域网束缚!PandaWiki+cpolar内网穿透实操,随时随地查资料
cpolar 是一款内网穿透工具,可以将你在局域网内运行的服务(如本地 Web 服务器、SSH、远程桌面等)通过一条安全加密的中间隧道映射至公网,让外部设备无需配置路由器即可访问。广泛支持 Windows、macOS、Linux、树莓派、群晖 NAS 等平台,并提供一键安装脚本方便部署。本文从零带你在飞牛NAS上部署并用好 PandaWiki:完成安装、初始配置与模型接入(以 DeepSeek 为例),导入与发布文档,体验 AI 检索和问答;
2026-01-16 18:50:30
615
22
原创 拒绝把天聊死!我用 openJiuwen + DeepSeek+自建知识库 搭建了一个高情商沟通助手
在日常生活中,你是否也经常遇到这种尴尬时刻:收到对象的消息不知道怎么回才不显得敷衍?面对领导的“敲打”,不知道如何高情商应对?想拒绝朋友的借钱请求,却开不了口?为了解决这个“社恐”难题,我决定动手做一个AI 智能体(Agent)。这次我没有写复杂的代码,而是使用了 openJiuwen提供的可部署智能体开发平台,并接入了性价比极高的 DeepSeek 模型,十分钟就搓出了一个“高情商沟通助手”。
2026-01-13 21:29:58
631
6
原创 Portainer:让 Docker 管理变简单,用cpolar突破局域网后协作更轻松
Portainer 是一款 Docker 可视化管理工具,能将复杂的命令行操作转化为图形化界面,方便用户管理容器、镜像、网络和存储等。它适合开发者、运维人员以及中小型团队使用,优点在于操作直观,通过拖拽、点击就能完成容器部署、重启、备份等操作,还支持角色权限分配,避免误操作影响生产环境,全平台兼容的特性也让它在不同系统上都能稳定运行。使用 Portainer 的过程中,最大的体会是 “降低了 Docker 的使用门槛”。
2026-01-12 18:11:58
12445
32
原创 【2025年度总结】从代码萌新到万粉博主:AI赋能下的破局与生长
2025年技术成长与AI融合之路:从Java图形化编程起步,完成C++理论学习并探索Linux终端;在AI智能体开发领域取得突破,参与开发比赛并运用AI辅助编程提升效率;CSDN粉丝突破万粉,实现技术分享与生活的平衡。这一年见证了从传统编程到AI前沿的跨越式成长,展现了技术学习与AI应用相结合的丰硕成果。
2025-12-31 16:47:02
10523
55
原创 在昇腾 NPU上跑通 Mistral-7B:从环境避坑到 100% 算力释放
目前的痛点主要在于 PyTorch 插件的易用性上(例如 accelerate 的自动映射支持还不够完美),导致我们必须手动写 .to("npu")。为了最大限度利用 NPU 算力,我们不能使用默认的 device_map="auto",因为它依赖 accelerate 库进行设备调度,在 NPU 上极易报错 ValueError: requires accelerate。本文详细记录了如何在。在跑通基础推理后,我们需要构建一个真正能对话的 Agent,并验证算力是否达到了 设备 的应有水平。
2025-12-26 23:33:33
25071
9
原创 在昇腾 NPU上跑通 Llama 3-8B:从环境部署到 100% 算力满载
Llama 3 是目前开源大模型的“流量担当”,而昇腾 (Ascend) 上的环境 则是算力的“扛把子”。如果 AICore 始终很低,说明数据卡在 CPU 预处理上了(CPU 瓶颈),但在本例中,表现出了极佳的吞吐能力。在 FP16 精度下的表现非常强劲,对于企业构建私有化大模型底座而言,它已经不再是“备胎”,而是具备极高性价比的主力选择。最终,模型成功输出了完整的 Python 冒泡排序代码,注释准确,逻辑清晰,无乱码。上进行 微调,让模型拥有垂直领域的专业知识,那才是 NPU 真正大显身手的地方。
2025-12-25 15:35:18
20788
5
原创 在昇腾 NPU上压测 Qwen1.5-MoE:AtomGit 云端部署全记录
从日志中可以看到,在首次加载模型权重(约 29GB)并完成推理的全过程中,耗时控制在合理范围内。由于Qwen1.5-MoE 的基础权重高达 29GB,普通 32GB 显存卡通常只能支持极短的对话。这说明 Qwen1.5-MoE 的稀疏计算特性与 Atlas 800T A2 的高算力完美契合——并发越高,NPU 的流水线利用率越高,展现了极强的生产环境潜力。MoE 模型的参数量本身就很大(~29GB),留给 KV Cache(上下文记忆)的空间很有限。MoE 模型对环境版本要求较高,尤其是 CANN 版本。
2025-12-25 15:01:26
20803
38
原创 金仓数据库(KingbaseES),三重革新,一文讲解
无论是核心业务系统的稳定运行,还是敏感数据的安全防护,亦或是复杂场景下的性能优化,都呼唤一款既能无缝衔接现有架构,又能突破传统数据库瓶颈的创新引擎。兼容,是我们连接过去的桥梁,而部署、安全、性能上的三重革新,则是我们赋能未来的引擎。这种 “精准到行” 的性能诊断能力,让运维从 “大海捞针” 转变为 “探囊取物”,不仅大幅缩短问题排查时间,更能帮助企业持续优化存储过程性能,让核心业务系统始终保持高效运行,为用户体验保驾护航。这意味着,数据库在诞生的那一刻,就已处于为您的业务负载量身定制的高性能状态。
2025-12-17 14:01:24
10807
44
原创 vLLM-Ascend 部署与推理服务化实战
vLLM 是目前大模型推理领域最火热的高性能推理框架之一,以其 PagedAttention 技术著称。而 vLLM-Ascend 则是 vLLM 在华为昇腾 NPU 上的硬件插件,使得昇腾算力能够通过 vLLM 释放强大的推理性能。在真正开始做迁移之前,我原本以为 GPU 和 NPU 在推理框架上的适配会非常复杂,但上手后才发现,vLLM-Ascend 的设计思路非常清晰:它在底层为昇腾补齐了算子、调度和内存管理,让我几乎不需要改动任何推理逻辑,就能把原本跑在 GPU 上的模型直接迁移到昇腾上运行。
2025-12-10 23:08:40
6098
53
原创 深入理解整数的原码、反码、补码与位运算
作为底层优化的利器,广泛应用于程序开发、数据加密、图像处理等领域。本文将详细解析整数的表示方式,并深入剖析常见的位运算符。,不仅能帮助我们优化代码,还能在底层开发中游刃有余。掌握这些知识,将使你在编程道路上更进一步!在计算机世界中,整数的存储和运算方式与数学中的概念略有不同。为了高效处理正负数,计算机采用。(最高位,0 代表正数,1 代表负数)。在存储负数时,计算机采用了。上进行的运算,速度极快,常用于优化程序性能。,在这之上,为了区分正负数,引入了。计算机内部的整数存储方式通常基于。
2025-12-09 13:53:31
919
4
原创 [鸿蒙2025领航者闯关] 鸿蒙 6 特性实战闯关:金融支付应用的安全升级之路
特性与场景强绑定:AI防窥不是简单模糊屏幕,而是要结合支付场景精准控制模糊范围与时机,避免影响用户操作底层安全是核心保障:星盾架构省去了大量自定义加密代码,但需确保前后端协同适配,才能发挥其全链路防护能力智能化提升用户接受度:AI防诈功能的关键是“精准识别+人性化预警”,过度拦截会引发用户反感,需通过数据优化平衡安全与体验接下来我计划将鸿蒙6.0的“加密分享”特性融入账单分享功能,让金融安全覆盖更全场景。
2025-12-08 17:17:57
23721
47
原创 MySQL入门必备:一文吃透表的增删改查(CRUD)全操作
CRUD是数据库操作的核心思想,对应四种基本操作:Create(创建):往表中插入新数据Retrieve(读取):从表中查询所需数据Update(更新):修改表中已有的数据Delete(删除):移除表中不需要的数据-- 学生表:存储学号、姓名、QQ等信息sn INT NOT NULL UNIQUE COMMENT '学号',-- 考试成绩表:存储学生各科成绩name VARCHAR(20) NOT NULL COMMENT '同学姓名',
2025-12-03 23:18:36
878
52
原创 机器学习基础入门(第七篇):神经网络训练优化与常见问题解析
神经网络的训练优化是一门 “艺术与科学的结合”。它涉及数学理论(梯度下降、损失函数)、算法策略(优化器、正则化)、以及经验技巧(学习率、归一化、提前停止)。要想训练出性能优异、泛化良好的模型,你需要不断:观察曲线变化;调整超参数;理解每一个 “优化手段” 的作用机制。深度学习不仅仅是堆层数,更重要的是如何让模型 “稳定地学会”。
2025-12-01 18:27:46
30200
51
原创 汽车领域智能体开发全解析—腾讯云黑客松Agent应用创新挑战赛微信公众号赛道实战复盘
在AI智能体技术飞速发展的当下,如何让专业领域知识更高效地触达用户,成为开发者们探索的核心方向。作为腾讯云黑客松Agent应用创新挑战赛微信公众号赛道的参赛者,我聚焦汽车选购这一用户高频需求,打造了“骑驾电评社智能体”。本文将从项目灵感、技术架构、实现难点、应用心得及参赛感悟五个维度,复盘整个开发过程中的思考与实践。
2025-11-26 20:18:33
30113
44
原创 Boost C++ 库在 HarmonyOS PC 上的交叉编译实践
错误信息原因分析;但Jamroot中没有定义项目。解决方案在Jamroot中添加# 在 build_ohos.sh 中添加if!then/a\# 备用方法:在文件末尾添加EOFfi对应的Jamroot使用空版本号: 在中使用空版本号,让 Boost.Build 使用完整路径工具集名称: 使用而不是编译器路径: 在中指定完整的交叉编译器路径A:中定义了隐式依赖,但Jamroot中没有定义这个项目。添加项目定义可以让 Boost.Build 正确解析这个依赖。
2025-11-24 20:55:30
20575
45
原创 libtool 适配 HarmonyOS PC 完整踩坑指南
问题描述运行configure根本原因GL_INIT是 gnulib 提供的宏,定义在中aclocal需要包含gnulib/m4目录才能找到这些宏如果aclocal没有正确配置,宏就不会被展开解决方案确保aclocal调用时包含gnulib/m4# 检查 gnulib 是否已初始化then# 运行 aclocal,包含 gnulib/m4 目录exit 1else# 如果 gnulib 未初始化,先运行 bootstrapfi经验总结aclocal的-I选项用于指定宏搜索路径。
2025-11-18 20:10:12
5357
46
原创 基于Rust实现爬取 GitHub Trending 热门仓库
定义存储仓库信息的结构体,使用// 作者/组织名// 仓库名// 仓库描述// 星标数// 分支数// 今日新增星标// 仓库链接本项目是基于 Rust 开发的 GitHub Trending 热门 Rust 仓库爬虫,通过reqwest实现异步 HTTP 请求、scraper解析 HTML 页面、serde系列库完成 JSON 序列化,搭配tokio异步运行时和anyhow错误处理库,构建了高效且健壮的爬取流程。相较于初始版本,优化后的代码在 CSS 选择器上采用语义化属性(如基于href。
2025-11-13 19:17:42
6489
52
原创 Rust 命令行待办工具
Rust 语法实践:掌握结构体、枚举、 trait(如DefaultPartialOrd)、错误处理(Result类型、?操作符)的实际应用;第三方库使用:熟悉clap命令行解析、serdeJSON 序列化、chrono时间处理的核心 API;工程化思维:通过模块拆分(todo.rs封装核心逻辑、main.rs处理交互)实现代码解耦,通过 JSON 持久化确保数据安全。
2025-11-13 19:10:01
5412
18
原创 Rust与主流编程语言的深度对比分析
内存安全无 GC:通过所有权、借用、生命周期三大规则,在编译期阻断野指针、缓冲区溢出等问题,无需垃圾回收(GC),适合实时系统(如工业控制)、嵌入式设备(内存受限)。零成本抽象:泛型、trait、异步等抽象特性在编译期被转换为高效机器码,无运行时开销(如泛型不产生额外代码膨胀,异步无 Runtime 调度)。并发安全:Send/Sync trait 标记线程安全类型,配合 Arc<Mutex>、RwLock 等容器,编译期阻止数据竞争,多线程编程更可靠。跨平台兼容性。
2025-11-12 23:49:09
5866
41
原创 《Spatial Joy 2025 全球 AR&AI 赛事:开发者必备资源、玩法、避坑攻略都在这》
对刚入行的朋友,这绝对是快速积累AR&AI实战经验的捷径。你不用去对接复杂的商业需求,就能直接用上Rokid乐奇顶尖的空间计算资源和全系列AR硬件练手——这种机会在平时可遇不可求。对资深开发者而言,这正是展示技术视野的绝佳舞台。空间AI认知闭环、AR场景落地,这些方向正是当前行业最稀缺的技术能力,随便哪一个写进履历里都是重磅加分项。说白了,这场赛事就是Rokid乐奇给技术人送"资源+机遇"的。你能用别人花上亿搭建的AR技术生态,做能直接在硬件上落地的项目,还能拿到AR行业龙头的背书——这种好事真的不常有。
2025-11-06 16:15:40
953
11
原创 迁移 / 运维 / 授权三重考量!电科金仓数据库选型全解析 + 常用 SQL 手册
以某银行手机银行业务系统为例,在峰值并发达到3000TPS的场景下,金仓通过毫秒级同步机制保障灾备数据一致性,并结合JDBC负载均衡策略合理分担读请求压力,使主库CPU利用率稳定控制在30%以下,系统运行平稳。建议企业在进行数据库选型时,除关注初始采购价格外,还应全面评估迁移难度、运维复杂度、扩展成本及技术支持响应能力等维度,优先选择生态健全、工具链完整、服务响应高效的产品方案。,可在迁移前对源数据库进行全面扫描,自动生成兼容性分析报告及改写建议清单,帮助团队提前识别潜在风险点,有效压缩适配周期。
2025-11-05 21:11:30
11298
58
原创 技术干货-MYSQL数据类型详解
ENUM适合 “单选” 场景,节省空间且使用简单;SET适合 “多选” 场景,支持灵活的组合选择;两者均通过预定义选项限制输入,保证数据规范性,但需根据实际需求选择使用。
2025-11-05 21:00:46
1298
32
原创 基于金仓KFS工具,破解多数据并存,浙人医改造实战医疗信创
作为浙江省卫健委直属,省内规模最大、实力最强的综合性三甲医院,浙江省人民医院(下称“浙人医”)庞大的服务体量与业务规模,使其成为省内卫健系统信创试点的核心选择,承担着探索和表率双重使命。电科金仓以“异构多活容灾架构”为核心的技术体系,不仅助力浙人医突破瓶颈,打造国内首个LIS系统国产化异构多院区多活改造案例,更构建了一套适配集团化医院信创的“全链路解决方案”,为行业提供了可落地的技术范本。
2025-10-28 18:36:19
11493
51
原创 浙人医创新开新篇——用KingbaseES数据库开创首个多院区异构多活容灾架构
2025 年 10 月 23 日消息,浙江省人民医院(浙人医)作为省内卫健系统信创 “领头雁”,依托金仓数据库搭建异构多院区多活数据底座,成为国内首个 LIS 国产化异构数据多院区多活改造案例。浙人医拥有多院区及托管分院,此前面临核心系统依赖国外数据库、多院区数据互通难等问题,遂选择 LIS 系统为信创突破口,联合电科金仓实现四大技术创新,达成 RTO≤10min、RPO=0 的 6 级灾容标准,业务连续性达 99.99%。
2025-10-24 16:48:42
20484
57
原创 从 “智能体” 到 “工作流智能体”:手把手搭个私人旅游助手,让出行规划自动跑起来
再复杂点的,比如客服聊天机器人,能读用户消息(感知),判断用户需求(决策),自动回复解答(行动),这也是智能体。1. 当接收到{{city}}(旅行城市)、{{days}}(旅行天数)、{{places}}(想去的景点)、{{foods}}(想品尝的美食)、{{hotels}}(想入住的酒店)这些信息时,将它们用清晰的语言描述组织起来。你是一位专业的旅行规划师,擅长根据不同城市、旅行天数、景点、美食和酒店信息,为用户制定清晰、合理且排版美观的旅行计划与攻略。从{{input}}提取景点输出为places。
2025-10-23 19:37:39
1426
61
原创 机器学习基础入门(第六篇):深度学习的兴起与神经网络基础
本文系统介绍了深度学习的起源、神经网络的基本原理、关键结构、典型算法以及发展趋势。深度学习的成功,不仅来源于模型结构的创新,更得益于计算力与数据的爆发。从感知机到 Transformer,人工智能正在从“识别世界”走向“理解世界”。多模态智能(Multimodal AI)可解释人工智能(XAI)神经符号融合(Neuro-Symbolic AI)这些方向将推动人工智能向“理解与推理”层面迈进。本文系统介绍了深度学习的起源、神经网络的基本原理、关键结构、典型算法以及发展趋势。
2025-10-20 12:46:41
935
15
原创 机器学习基础入门(第五篇):半监督学习与强化学习
在前几篇文章中,我们学习了机器学习的两大基本类型:监督学习(Supervised Learning) 与 无监督学习(Unsupervised Learning)。监督学习依赖大量带标签的数据,适用于分类、回归等任务;无监督学习则无需标签,常用于聚类、降维、模式发现等问题。然而,在现实世界中,标注数据往往稀缺而昂贵。例如,为成千上万张医学影像打上疾病标签,需要专业医生的时间与经验;而未标注的数据(例如海量图片、视频、日志信息)却极其丰富。于是,一种“折中”的方法——
2025-10-16 23:45:11
1588
48
原创 机器学习基础入门(第四篇):无监督学习与聚类方法
在前几篇文章中,我们学习了机器学习的基础知识、分类体系以及监督学习的原理与经典算法。监督学习在实际中非常常见,但它有一个关键前提:需要大量带标签的数据。然而在现实中,标注往往昂贵甚至不可行:电商平台积累了大量用户行为数据,却没有人逐一标注“用户群体”;医学影像数据庞大,但人工标注需要专家参与,耗费极高;工业传感器产生连续监测数据,但只有少量“故障”样本。在这些场景中,无监督学习(Unsupervised Learning) 就显得尤为重要。
2025-10-07 14:04:28
1761
65
原创 Rokid JSAR 技术开发全指南+实战演练
JSAR是Rokid推出的空间小程序开发技术,基于JavaScript和XSML等技术栈,降低AR开发门槛。它深度适配Rokid设备硬件,支持跨设备扩展,提供完整的开发工具链。开发环境搭建包括安装VS Code、Node.js和JSAR DevTools插件。项目初始化可通过npm或GitHub模板创建,核心结构包含XSML入口文件和3D资源。XSML扩展HTML语法描述3D空间,JSAR-DOM提供空间交互API。开发支持本地场景预览和WebXR浏览器调试,实现高效AR应用开发。
2025-10-04 21:36:45
1732
54
原创 机器学习基础入门(第三篇):监督学习详解与经典算法
在前两篇文章中,我们先后认识了机器学习的发展历程与应用场景,以及不同的分类方法。我们提到,监督学习是机器学习中最基础、最常见的任务类型,也是很多人工智能应用的核心。从垃圾邮件识别,到语音助手中的语音转文字,再到推荐系统中的点击预测,背后都离不开监督学习的支撑。对于初学者来说,掌握监督学习就是打开机器学习世界的第一把钥匙。本文将从以下几个方面深入解读监督学习:什么是监督学习?监督学习的常见任务:分类与回归监督学习的经典算法模型评估与性能衡量典型应用案例。
2025-10-03 14:13:53
1406
4
原创 机器学习基础入门(第二篇):机器学习的分类方法
在上一篇文章中,我们初步了解了什么是机器学习,以及它的基本工作流程。机器学习的本质是通过数据和算法,让计算机从经验中学习规律,并应用到预测或决策中。然而,机器学习并不是单一的一种方法,而是一个庞大的体系。不同的任务目标、不同的数据特点、不同的算法思路,都会形成各具特色的学习方法。对于初学者来说,最重要的第一步,就是搞清楚机器学习的分类方法。本文将从三个主要角度来梳理机器学习的分类体系:按数据标注情况划分按任务目标划分按模型性质划分。
2025-10-01 16:14:46
1830
54
原创 机器学习基础入门系列(一)--什么是机器学习?
机器学习就是让计算机能够“从数据中学习”,并利用所学知识做出预测或决策,而不需要人类写死所有的规则。👉 举个例子:如果让程序识别一张图片是不是猫,传统方法可能需要工程师写规则:有胡须、耳朵尖尖、四条腿……而机器学习方法则是:给计算机大量“猫”和“不是猫”的图片,让它自己去学习规律。如果一个程序在任务 T 上,随着经验 E 的积累,其在性能度量 P 上的表现不断提升,那么我们称这个程序具有从经验中学习的能力。任务 T:模型要做的事情(比如预测房价、识别图片)。经验 E。
2025-09-30 23:27:56
1308
35
原创 政务数字化国产化路径新范本:金仓数据库破解核心难题
在政务电子证照系统国产化升级中,“文档——关系型数据库架构适配”、“高并发场景承载” 始终是制约项目落地的核心难题。福建某地市电子证照共享服务系统改造前,因长期依赖MongoDB文档数据库,面临 2TB+数据迁移、1000+并发压力等困境。金仓数据库为其系统提供定制化方案,不仅实现从MongoDB到国产数据库的平滑过渡,更在迁移后系统稳定运行超6个月,有效支撑了当地500余家单位的证照共享服务,为政务数字化提供了可复制的国产化路径。
2025-09-26 19:03:41
11892
57
原创 MySQL 表约束实战指南:从概念到落地,守护数据完整性
比如在公司,我们需要一个员工管理系统,系统中有一个员工表,员工表中有两列信息,一个身份证号码,一 个是员工工号,我们可以选择身份号码作为主键。我们可以简单理解成,主键更多的是标识唯一性的。一般而言,我们建议将主键设计成为和当前业务无关的字段,这样,当业务调整的时候,我们可以尽量不会对主键做过大的调整。具体指的是在公司的业务上不能重复,我们设计表的时候,需要这个约束,那么就可以将员工工号设计成为唯 一键。理论上,上面的例子,我们不创建外键约束,就正常建立学生表,以及班级表,该有的字段我们都有。
2025-09-22 12:36:05
1951
62
原创 MySQL 数据库基础操作指南:从创建管理到备份恢复全解析
如果查出某个用户不是你正常登陆的,很有可能你的数据库被人入侵了。以后大家发现自己数据库比较慢时,可以用这个指令来查看数据库连接情况。文件里的内容,其实把我们整个创建数据库,建表,导入数据的语句都装载这个文件中。如果备份的不是整个数据库,而是其中的一张表,怎么做?可以告诉我们当前有哪些用户连接到我们的。实例: 将 hellomysql。不区分大小写的排序以及查询结果。字符集,并带校对规则的 bd。创建一个数据库,校验规则使用。创建一个数据库,校验规则使用。区分大小写的排序和查询结果。三个数据库的创建结果。
2025-09-18 13:42:46
2211
64
原创 数据库基础知识入门:从概念到架构的全面解析
在数字化时代,数据已成为驱动业务发展、支撑决策的核心资产 —— 小到手机里的通讯录,大到电商平台的交易记录、社交软件的用户数据,背后都离不开 “数据库” 的高效管理。但对于刚接触技术的新手来说,“数据库是什么?”“服务器和数据库有什么关系?”“SQL 该怎么用?” 这些问题往往让人困惑。为了帮大家理清数据库的基础知识框架,这篇博客会从最基础的背景讲起:先带你认识数据库的起源与核心价值,再逐步拆解数据库的定义、主流产品(如 MySQL、Oracle 等);
2025-09-16 23:54:58
1845
51
原创 机器学习的基本流程:从数据到模型
机器学习的世界广阔而深奥,但学习路径可以从流程化思维开始:收集数据、清洗和特征工程、选择合适的模型、评估与优化、最终部署。理解这五个步骤,你就已经具备了开展一个完整机器学习项目的基本框架。接下来,你可以逐步深入研究不同算法和更复杂的应用。
2025-09-12 12:39:03
2155
70
原创 机器学习的发展与应用:从理论到现实
机器学习作为人工智能的核心驱动力,已经从实验室走向千家万户,影响着我们的日常生活和社会发展。对于初学者而言,学习机器学习不仅是掌握一项技术,更是参与未来科技变革的门票。理解其发展历程与应用场景,能帮助我们更清晰地把握学习方向,迈向更深入的探索。
2025-09-10 20:59:27
1288
9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅