- 博客(194)
- 收藏
- 关注
原创 金仓数据库(KingbaseES),三重革新,一文讲解
无论是核心业务系统的稳定运行,还是敏感数据的安全防护,亦或是复杂场景下的性能优化,都呼唤一款既能无缝衔接现有架构,又能突破传统数据库瓶颈的创新引擎。兼容,是我们连接过去的桥梁,而部署、安全、性能上的三重革新,则是我们赋能未来的引擎。这种 “精准到行” 的性能诊断能力,让运维从 “大海捞针” 转变为 “探囊取物”,不仅大幅缩短问题排查时间,更能帮助企业持续优化存储过程性能,让核心业务系统始终保持高效运行,为用户体验保驾护航。这意味着,数据库在诞生的那一刻,就已处于为您的业务负载量身定制的高性能状态。
2025-12-17 14:01:24
10765
41
原创 vLLM-Ascend 部署与推理服务化实战
vLLM 是目前大模型推理领域最火热的高性能推理框架之一,以其 PagedAttention 技术著称。而 vLLM-Ascend 则是 vLLM 在华为昇腾 NPU 上的硬件插件,使得昇腾算力能够通过 vLLM 释放强大的推理性能。在真正开始做迁移之前,我原本以为 GPU 和 NPU 在推理框架上的适配会非常复杂,但上手后才发现,vLLM-Ascend 的设计思路非常清晰:它在底层为昇腾补齐了算子、调度和内存管理,让我几乎不需要改动任何推理逻辑,就能把原本跑在 GPU 上的模型直接迁移到昇腾上运行。
2025-12-10 23:08:40
1041
52
原创 深入理解整数的原码、反码、补码与位运算
作为底层优化的利器,广泛应用于程序开发、数据加密、图像处理等领域。本文将详细解析整数的表示方式,并深入剖析常见的位运算符。,不仅能帮助我们优化代码,还能在底层开发中游刃有余。掌握这些知识,将使你在编程道路上更进一步!在计算机世界中,整数的存储和运算方式与数学中的概念略有不同。为了高效处理正负数,计算机采用。(最高位,0 代表正数,1 代表负数)。在存储负数时,计算机采用了。上进行的运算,速度极快,常用于优化程序性能。,在这之上,为了区分正负数,引入了。计算机内部的整数存储方式通常基于。
2025-12-09 13:53:31
865
4
原创 [鸿蒙2025领航者闯关] 鸿蒙 6 特性实战闯关:金融支付应用的安全升级之路
特性与场景强绑定:AI防窥不是简单模糊屏幕,而是要结合支付场景精准控制模糊范围与时机,避免影响用户操作底层安全是核心保障:星盾架构省去了大量自定义加密代码,但需确保前后端协同适配,才能发挥其全链路防护能力智能化提升用户接受度:AI防诈功能的关键是“精准识别+人性化预警”,过度拦截会引发用户反感,需通过数据优化平衡安全与体验接下来我计划将鸿蒙6.0的“加密分享”特性融入账单分享功能,让金融安全覆盖更全场景。
2025-12-08 17:17:57
11093
46
原创 MySQL入门必备:一文吃透表的增删改查(CRUD)全操作
CRUD是数据库操作的核心思想,对应四种基本操作:Create(创建):往表中插入新数据Retrieve(读取):从表中查询所需数据Update(更新):修改表中已有的数据Delete(删除):移除表中不需要的数据-- 学生表:存储学号、姓名、QQ等信息sn INT NOT NULL UNIQUE COMMENT '学号',-- 考试成绩表:存储学生各科成绩name VARCHAR(20) NOT NULL COMMENT '同学姓名',
2025-12-03 23:18:36
802
51
原创 机器学习基础入门(第七篇):神经网络训练优化与常见问题解析
神经网络的训练优化是一门 “艺术与科学的结合”。它涉及数学理论(梯度下降、损失函数)、算法策略(优化器、正则化)、以及经验技巧(学习率、归一化、提前停止)。要想训练出性能优异、泛化良好的模型,你需要不断:观察曲线变化;调整超参数;理解每一个 “优化手段” 的作用机制。深度学习不仅仅是堆层数,更重要的是如何让模型 “稳定地学会”。
2025-12-01 18:27:46
30118
51
原创 汽车领域智能体开发全解析—腾讯云黑客松Agent应用创新挑战赛微信公众号赛道实战复盘
在AI智能体技术飞速发展的当下,如何让专业领域知识更高效地触达用户,成为开发者们探索的核心方向。作为腾讯云黑客松Agent应用创新挑战赛微信公众号赛道的参赛者,我聚焦汽车选购这一用户高频需求,打造了“骑驾电评社智能体”。本文将从项目灵感、技术架构、实现难点、应用心得及参赛感悟五个维度,复盘整个开发过程中的思考与实践。
2025-11-26 20:18:33
30037
44
原创 Boost C++ 库在 HarmonyOS PC 上的交叉编译实践
错误信息原因分析;但Jamroot中没有定义项目。解决方案在Jamroot中添加# 在 build_ohos.sh 中添加if!then/a\# 备用方法:在文件末尾添加EOFfi对应的Jamroot使用空版本号: 在中使用空版本号,让 Boost.Build 使用完整路径工具集名称: 使用而不是编译器路径: 在中指定完整的交叉编译器路径A:中定义了隐式依赖,但Jamroot中没有定义这个项目。添加项目定义可以让 Boost.Build 正确解析这个依赖。
2025-11-24 20:55:30
20461
45
原创 libtool 适配 HarmonyOS PC 完整踩坑指南
问题描述运行configure根本原因GL_INIT是 gnulib 提供的宏,定义在中aclocal需要包含gnulib/m4目录才能找到这些宏如果aclocal没有正确配置,宏就不会被展开解决方案确保aclocal调用时包含gnulib/m4# 检查 gnulib 是否已初始化then# 运行 aclocal,包含 gnulib/m4 目录exit 1else# 如果 gnulib 未初始化,先运行 bootstrapfi经验总结aclocal的-I选项用于指定宏搜索路径。
2025-11-18 20:10:12
5280
46
原创 基于Rust实现爬取 GitHub Trending 热门仓库
定义存储仓库信息的结构体,使用// 作者/组织名// 仓库名// 仓库描述// 星标数// 分支数// 今日新增星标// 仓库链接本项目是基于 Rust 开发的 GitHub Trending 热门 Rust 仓库爬虫,通过reqwest实现异步 HTTP 请求、scraper解析 HTML 页面、serde系列库完成 JSON 序列化,搭配tokio异步运行时和anyhow错误处理库,构建了高效且健壮的爬取流程。相较于初始版本,优化后的代码在 CSS 选择器上采用语义化属性(如基于href。
2025-11-13 19:17:42
6335
52
原创 Rust 命令行待办工具
Rust 语法实践:掌握结构体、枚举、 trait(如DefaultPartialOrd)、错误处理(Result类型、?操作符)的实际应用;第三方库使用:熟悉clap命令行解析、serdeJSON 序列化、chrono时间处理的核心 API;工程化思维:通过模块拆分(todo.rs封装核心逻辑、main.rs处理交互)实现代码解耦,通过 JSON 持久化确保数据安全。
2025-11-13 19:10:01
5348
17
原创 Rust与主流编程语言的深度对比分析
内存安全无 GC:通过所有权、借用、生命周期三大规则,在编译期阻断野指针、缓冲区溢出等问题,无需垃圾回收(GC),适合实时系统(如工业控制)、嵌入式设备(内存受限)。零成本抽象:泛型、trait、异步等抽象特性在编译期被转换为高效机器码,无运行时开销(如泛型不产生额外代码膨胀,异步无 Runtime 调度)。并发安全:Send/Sync trait 标记线程安全类型,配合 Arc<Mutex>、RwLock 等容器,编译期阻止数据竞争,多线程编程更可靠。跨平台兼容性。
2025-11-12 23:49:09
5806
41
原创 《Spatial Joy 2025 全球 AR&AI 赛事:开发者必备资源、玩法、避坑攻略都在这》
对刚入行的朋友,这绝对是快速积累AR&AI实战经验的捷径。你不用去对接复杂的商业需求,就能直接用上Rokid乐奇顶尖的空间计算资源和全系列AR硬件练手——这种机会在平时可遇不可求。对资深开发者而言,这正是展示技术视野的绝佳舞台。空间AI认知闭环、AR场景落地,这些方向正是当前行业最稀缺的技术能力,随便哪一个写进履历里都是重磅加分项。说白了,这场赛事就是Rokid乐奇给技术人送"资源+机遇"的。你能用别人花上亿搭建的AR技术生态,做能直接在硬件上落地的项目,还能拿到AR行业龙头的背书——这种好事真的不常有。
2025-11-06 16:15:40
911
9
原创 迁移 / 运维 / 授权三重考量!电科金仓数据库选型全解析 + 常用 SQL 手册
以某银行手机银行业务系统为例,在峰值并发达到3000TPS的场景下,金仓通过毫秒级同步机制保障灾备数据一致性,并结合JDBC负载均衡策略合理分担读请求压力,使主库CPU利用率稳定控制在30%以下,系统运行平稳。建议企业在进行数据库选型时,除关注初始采购价格外,还应全面评估迁移难度、运维复杂度、扩展成本及技术支持响应能力等维度,优先选择生态健全、工具链完整、服务响应高效的产品方案。,可在迁移前对源数据库进行全面扫描,自动生成兼容性分析报告及改写建议清单,帮助团队提前识别潜在风险点,有效压缩适配周期。
2025-11-05 21:11:30
11243
57
原创 技术干货-MYSQL数据类型详解
ENUM适合 “单选” 场景,节省空间且使用简单;SET适合 “多选” 场景,支持灵活的组合选择;两者均通过预定义选项限制输入,保证数据规范性,但需根据实际需求选择使用。
2025-11-05 21:00:46
1267
31
原创 基于金仓KFS工具,破解多数据并存,浙人医改造实战医疗信创
作为浙江省卫健委直属,省内规模最大、实力最强的综合性三甲医院,浙江省人民医院(下称“浙人医”)庞大的服务体量与业务规模,使其成为省内卫健系统信创试点的核心选择,承担着探索和表率双重使命。电科金仓以“异构多活容灾架构”为核心的技术体系,不仅助力浙人医突破瓶颈,打造国内首个LIS系统国产化异构多院区多活改造案例,更构建了一套适配集团化医院信创的“全链路解决方案”,为行业提供了可落地的技术范本。
2025-10-28 18:36:19
11476
51
原创 浙人医创新开新篇——用KingbaseES数据库开创首个多院区异构多活容灾架构
2025 年 10 月 23 日消息,浙江省人民医院(浙人医)作为省内卫健系统信创 “领头雁”,依托金仓数据库搭建异构多院区多活数据底座,成为国内首个 LIS 国产化异构数据多院区多活改造案例。浙人医拥有多院区及托管分院,此前面临核心系统依赖国外数据库、多院区数据互通难等问题,遂选择 LIS 系统为信创突破口,联合电科金仓实现四大技术创新,达成 RTO≤10min、RPO=0 的 6 级灾容标准,业务连续性达 99.99%。
2025-10-24 16:48:42
20418
57
原创 从 “智能体” 到 “工作流智能体”:手把手搭个私人旅游助手,让出行规划自动跑起来
再复杂点的,比如客服聊天机器人,能读用户消息(感知),判断用户需求(决策),自动回复解答(行动),这也是智能体。1. 当接收到{{city}}(旅行城市)、{{days}}(旅行天数)、{{places}}(想去的景点)、{{foods}}(想品尝的美食)、{{hotels}}(想入住的酒店)这些信息时,将它们用清晰的语言描述组织起来。你是一位专业的旅行规划师,擅长根据不同城市、旅行天数、景点、美食和酒店信息,为用户制定清晰、合理且排版美观的旅行计划与攻略。从{{input}}提取景点输出为places。
2025-10-23 19:37:39
1339
61
原创 机器学习基础入门(第六篇):深度学习的兴起与神经网络基础
本文系统介绍了深度学习的起源、神经网络的基本原理、关键结构、典型算法以及发展趋势。深度学习的成功,不仅来源于模型结构的创新,更得益于计算力与数据的爆发。从感知机到 Transformer,人工智能正在从“识别世界”走向“理解世界”。多模态智能(Multimodal AI)可解释人工智能(XAI)神经符号融合(Neuro-Symbolic AI)这些方向将推动人工智能向“理解与推理”层面迈进。本文系统介绍了深度学习的起源、神经网络的基本原理、关键结构、典型算法以及发展趋势。
2025-10-20 12:46:41
879
15
原创 机器学习基础入门(第五篇):半监督学习与强化学习
在前几篇文章中,我们学习了机器学习的两大基本类型:监督学习(Supervised Learning) 与 无监督学习(Unsupervised Learning)。监督学习依赖大量带标签的数据,适用于分类、回归等任务;无监督学习则无需标签,常用于聚类、降维、模式发现等问题。然而,在现实世界中,标注数据往往稀缺而昂贵。例如,为成千上万张医学影像打上疾病标签,需要专业医生的时间与经验;而未标注的数据(例如海量图片、视频、日志信息)却极其丰富。于是,一种“折中”的方法——
2025-10-16 23:45:11
1530
48
原创 机器学习基础入门(第四篇):无监督学习与聚类方法
在前几篇文章中,我们学习了机器学习的基础知识、分类体系以及监督学习的原理与经典算法。监督学习在实际中非常常见,但它有一个关键前提:需要大量带标签的数据。然而在现实中,标注往往昂贵甚至不可行:电商平台积累了大量用户行为数据,却没有人逐一标注“用户群体”;医学影像数据庞大,但人工标注需要专家参与,耗费极高;工业传感器产生连续监测数据,但只有少量“故障”样本。在这些场景中,无监督学习(Unsupervised Learning) 就显得尤为重要。
2025-10-07 14:04:28
1719
65
原创 Rokid JSAR 技术开发全指南+实战演练
JSAR是Rokid推出的空间小程序开发技术,基于JavaScript和XSML等技术栈,降低AR开发门槛。它深度适配Rokid设备硬件,支持跨设备扩展,提供完整的开发工具链。开发环境搭建包括安装VS Code、Node.js和JSAR DevTools插件。项目初始化可通过npm或GitHub模板创建,核心结构包含XSML入口文件和3D资源。XSML扩展HTML语法描述3D空间,JSAR-DOM提供空间交互API。开发支持本地场景预览和WebXR浏览器调试,实现高效AR应用开发。
2025-10-04 21:36:45
1704
54
原创 机器学习基础入门(第三篇):监督学习详解与经典算法
在前两篇文章中,我们先后认识了机器学习的发展历程与应用场景,以及不同的分类方法。我们提到,监督学习是机器学习中最基础、最常见的任务类型,也是很多人工智能应用的核心。从垃圾邮件识别,到语音助手中的语音转文字,再到推荐系统中的点击预测,背后都离不开监督学习的支撑。对于初学者来说,掌握监督学习就是打开机器学习世界的第一把钥匙。本文将从以下几个方面深入解读监督学习:什么是监督学习?监督学习的常见任务:分类与回归监督学习的经典算法模型评估与性能衡量典型应用案例。
2025-10-03 14:13:53
1366
4
原创 机器学习基础入门(第二篇):机器学习的分类方法
在上一篇文章中,我们初步了解了什么是机器学习,以及它的基本工作流程。机器学习的本质是通过数据和算法,让计算机从经验中学习规律,并应用到预测或决策中。然而,机器学习并不是单一的一种方法,而是一个庞大的体系。不同的任务目标、不同的数据特点、不同的算法思路,都会形成各具特色的学习方法。对于初学者来说,最重要的第一步,就是搞清楚机器学习的分类方法。本文将从三个主要角度来梳理机器学习的分类体系:按数据标注情况划分按任务目标划分按模型性质划分。
2025-10-01 16:14:46
1767
54
原创 机器学习基础入门系列(一)--什么是机器学习?
机器学习就是让计算机能够“从数据中学习”,并利用所学知识做出预测或决策,而不需要人类写死所有的规则。👉 举个例子:如果让程序识别一张图片是不是猫,传统方法可能需要工程师写规则:有胡须、耳朵尖尖、四条腿……而机器学习方法则是:给计算机大量“猫”和“不是猫”的图片,让它自己去学习规律。如果一个程序在任务 T 上,随着经验 E 的积累,其在性能度量 P 上的表现不断提升,那么我们称这个程序具有从经验中学习的能力。任务 T:模型要做的事情(比如预测房价、识别图片)。经验 E。
2025-09-30 23:27:56
1227
35
原创 政务数字化国产化路径新范本:金仓数据库破解核心难题
在政务电子证照系统国产化升级中,“文档——关系型数据库架构适配”、“高并发场景承载” 始终是制约项目落地的核心难题。福建某地市电子证照共享服务系统改造前,因长期依赖MongoDB文档数据库,面临 2TB+数据迁移、1000+并发压力等困境。金仓数据库为其系统提供定制化方案,不仅实现从MongoDB到国产数据库的平滑过渡,更在迁移后系统稳定运行超6个月,有效支撑了当地500余家单位的证照共享服务,为政务数字化提供了可复制的国产化路径。
2025-09-26 19:03:41
11873
57
原创 MySQL 表约束实战指南:从概念到落地,守护数据完整性
比如在公司,我们需要一个员工管理系统,系统中有一个员工表,员工表中有两列信息,一个身份证号码,一 个是员工工号,我们可以选择身份号码作为主键。我们可以简单理解成,主键更多的是标识唯一性的。一般而言,我们建议将主键设计成为和当前业务无关的字段,这样,当业务调整的时候,我们可以尽量不会对主键做过大的调整。具体指的是在公司的业务上不能重复,我们设计表的时候,需要这个约束,那么就可以将员工工号设计成为唯 一键。理论上,上面的例子,我们不创建外键约束,就正常建立学生表,以及班级表,该有的字段我们都有。
2025-09-22 12:36:05
1918
62
原创 MySQL 数据库基础操作指南:从创建管理到备份恢复全解析
如果查出某个用户不是你正常登陆的,很有可能你的数据库被人入侵了。以后大家发现自己数据库比较慢时,可以用这个指令来查看数据库连接情况。文件里的内容,其实把我们整个创建数据库,建表,导入数据的语句都装载这个文件中。如果备份的不是整个数据库,而是其中的一张表,怎么做?可以告诉我们当前有哪些用户连接到我们的。实例: 将 hellomysql。不区分大小写的排序以及查询结果。字符集,并带校对规则的 bd。创建一个数据库,校验规则使用。创建一个数据库,校验规则使用。区分大小写的排序和查询结果。三个数据库的创建结果。
2025-09-18 13:42:46
2177
64
原创 数据库基础知识入门:从概念到架构的全面解析
在数字化时代,数据已成为驱动业务发展、支撑决策的核心资产 —— 小到手机里的通讯录,大到电商平台的交易记录、社交软件的用户数据,背后都离不开 “数据库” 的高效管理。但对于刚接触技术的新手来说,“数据库是什么?”“服务器和数据库有什么关系?”“SQL 该怎么用?” 这些问题往往让人困惑。为了帮大家理清数据库的基础知识框架,这篇博客会从最基础的背景讲起:先带你认识数据库的起源与核心价值,再逐步拆解数据库的定义、主流产品(如 MySQL、Oracle 等);
2025-09-16 23:54:58
1809
51
原创 机器学习的基本流程:从数据到模型
机器学习的世界广阔而深奥,但学习路径可以从流程化思维开始:收集数据、清洗和特征工程、选择合适的模型、评估与优化、最终部署。理解这五个步骤,你就已经具备了开展一个完整机器学习项目的基本框架。接下来,你可以逐步深入研究不同算法和更复杂的应用。
2025-09-12 12:39:03
2014
70
原创 机器学习的发展与应用:从理论到现实
机器学习作为人工智能的核心驱动力,已经从实验室走向千家万户,影响着我们的日常生活和社会发展。对于初学者而言,学习机器学习不仅是掌握一项技术,更是参与未来科技变革的门票。理解其发展历程与应用场景,能帮助我们更清晰地把握学习方向,迈向更深入的探索。
2025-09-10 20:59:27
1239
9
原创 已知 inode 号,如何操作文件?Ext 文件系统增删查改底层逻辑拆解
在 Linux Ext 系列文件系统(Ext2/Ext3/Ext4)中,inode 是文件的 “身份证”—— 它记录了文件的元数据(权限、大小、数据块位置等),是连接 “文件名” 与 “实际数据” 的核心桥梁。我们通常通过文件名(如)操作文件,但这背后其实是 “文件名→目录项→inode→数据块” 的查找流程。那如果跳过目录查找,直接已知 inode 号和指定分区,对文件的 “增、删、查、改” 本质是在做什么?这不仅能帮我们理解文件系统的底层逻辑,更能搞懂 “inode 为何是文件的核心索引”。
2025-09-09 22:40:22
1394
51
原创 Linux 之从硬件硬盘到文件系统的全面过渡
其实硬盘是典型的“块”设备,操作系统读取硬盘数据的时候,其实是不会一个个扇区地读取,这样 效率太低,而是一次性连续读取多个扇区,即一次性读取一个”块”(block)。一个”块”的大小是由格式化的时候确定的,并且不可 以更改,最常见的是4KB,即连续八个扇区组成一个”块”。但是CHS模式支持的硬盘容量有限,因为系统用8bit来存储磁头地址,用10bit来存储柱面地址,用6bit来存储扇区地址,而一个扇区共有512Byte,这样使用CHS寻址一块硬盘最大容量。OS使用磁盘,就可以用一个数字访问磁盘扇区了。
2025-09-07 17:57:06
2009
56
原创 Linux 基础IO-从 “一切皆文件” 到自定义 libc 缓冲区
缓冲区是内存空间的一部分。也就是说,在内存空间中预留了一定的存储空间,这些存储空间用来缓冲输入或输出的数据,这部分预留的空间就叫做缓冲区。缓冲区根据其对应的是输入设备还是输出设备,分为输入缓冲区和输出缓冲区。
2025-09-04 14:21:07
1983
63
原创 迷你版Shell:源码详解与行为解析
这份源码实现了一个结构清晰、功能完整的迷你 Shell:提示符、行读取、解析、内建命令、环境处理、重定向与fork/exec执行都具备。通过g_argv全局数组、状态和lastcode的设计,shell 在父进程与子进程职责分工上实现了典型行为:内建命令直接生效、外部命令在子进程受重定向影响并通过execvp执行。
2025-08-26 22:06:19
1526
60
原创 深入理解 Linux 系统文件 I/O:从 open 到重定向的底层逻辑》
在 Linux 系统中,程序与文件的交互离不开 “系统文件 I/O”—— 这是操作系统为用户层程序提供的一套底层接口,也是理解 “程序如何操作文件” 的核心钥匙。无论是我们日常使用的文本编辑器,还是后台运行的服务程序,其读写文件、处理输入输出的能力,最终都依赖于openwritereaddup2这些系统调用。但对于很多开发者来说,系统文件 I/O 的知识点常常是零散的:标志位的组合有什么规律?open返回的文件描述符到底是什么?为什么fd=0、1、2总是被默认占用?重定向又是如何通过dup2实现的?
2025-08-23 23:09:03
2764
59
原创 从基础到本质:文件 IO 操作全解析
目录"文件"的理解文件操作的归类认知回顾C语言的文件接口打开文件写文件读文件输出信息到控制台stdin & stdout & stderr打开文件的方式wa狭义理解文件在磁盘里,磁盘是永久性存储介质,因此文件在磁盘上的存储是永久性的。如果文件大小为0,文件要不要在磁盘上占据空间呢?要的,文件=内容+属性。广义理解在前面我们提到,Linux下一切皆文件(键盘、显示器、网卡、磁盘…… 这些都是抽象化的过程)。系统角度对文件的操作本质是进程对文件的操作,磁盘的管理者是操作系统。文件的读写本质不是通过C语言/C++
2025-08-20 11:26:50
1832
45
原创 算法魅力-BFS解决多源最短路
在图论与网格问题中,最常见的一类题目就是“求最短距离”。通常情况下,我们会从某一个起点出发,利用 BFS(广度优先搜索) 逐层扩展,得到从该点到所有点的最短路。然而,在许多实际场景中,往往存在 多个起点:例如从多个水源扩展到所有陆地、从多个火源蔓延到整个森林,或者像 LeetCode 1162. 地图分析中,从所有陆地出发,计算到最远海洋的距离。这类问题的核心思想就是 BFS 多源最短路。它与单源 BFS 不同的地方在于:将所有起点一开始就同时加入队列,作为 BFS 的第一层;
2025-08-18 13:08:21
1747
53
原创 进程替换:从 “改头换面” 到程序加载的底层逻辑
目录前提引入替换原理替换函数函数理解实例扩展延伸在程序替换的过程中,并没有创建新的进程,只是把当前进程的代码和数据用新的程序的代码和数据覆盖式的进行替换。发现结果后面没有print没有输出。一旦程序替换成功,就去执行新代码了,原始代码的后半部分,已经不存在了!exec*函数,只有失败返回值,没有成功返回值。命名理解为什么不影响父进程吗?1.进程具有独立性 2.代码数据写时拷贝能替换自己的程序吗?能1.替换C程序exe2.替换.py文件第二个参数,命令行示例其他java等都行。
2025-08-16 17:40:10
1055
44
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅