AcWing.900.整数划分(计数DP)

一个正整数 n 可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中 n1≥n2≥…≥nk,k≥1。

我们将这样的一种表示称为正整数 n 的一种划分。

现在给定一个正整数 n,请你求出 n 共有多少种不同的划分方法。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示总划分数量。

由于答案可能很大,输出结果请对 1e9+7 取模。

数据范围

1≤n≤1000

输入样例:
5
输出样例:
7

可以看作完全背包问题:1,2...代表每个物品体积,n代表背包体积
以 f[i][j] 代表:从1~i中选,且总和恰好为j的数量有多少

则集合可以划分为:选0个第i个物品:f[i - 1][ j ],选1个第i个物品:f[i - 1][j - i],选2个第i个物品:f[i - 1][j - 2i],......,选s个第i个物品:f[i - 1][j - si]

就像在分析完全背包问题时一样,我们可以写出下面的式子(由于此时我们要求的是数量,那么我们就要写成相加的形式):

f[ i ][ j ] = f[i - 1][ j ] + f[i - 1][j - i] + f[i - 1][j - 2i] + f[i - 1][j - 3i] +......+ f[i - 1][j - si] 

f[ i ][j - i] = f[i - 1][j - i] + f[i - 1][j - 2i] + f[i - 1][j - 3i] +......+f[i - 1][j - si] 

故可以发现:f[ i ][j - i]和f[ i ][ j ]第二项开始就是相同的,故可以直接把状态转移方程写为:

f[ i ][ j ] = f[i - 1][ j ]  +  f[ i ][ j - i] 

然后我们类比完全背包,又可以得到优化后的一维方程:
                                                                f[ j ] = f[ j ] + f[j - i] 

#include<iostream>
using namespace std;
const int N = 1000 + 10;
const int mod = 1e9 + 7;

int n;
int f[N];

int main() {
	cin >> n;
	f[0] = 1;	//如果选0个数,也就是他自己本身了

	for (int i = 1; i <= n; i++) {
		for (int j = i; j <= n; j++) {
			f[j] = (f[j] + f[j - i]) % mod;
		}
	}
	
	cout << f[n];
	return 0;
}

 另一种做法:
把f[ i ][ j ]表示:所有的总和是i,且恰好表示成j个数的方案的数量

集合划分为:最小值是1,以及最小值大于1两种

对于最小值是1:我们表示为f[i - 1][j - 1],对于任何最小值为1的方案,我们减去这个1,那么就能得到f[i -1][j -1]这个方案,然后对于f[i - 1][j - 1]这个方案加上这个1,其对应的方案数仍然是f[i - 1][j -1],故我们可以直接用f[i - 1][j - 1]来表示这个情况。

对于最小值大于1:我们表示为f[i - j][ j ],对于这些方案,我们把里面所有的数减去1,那么就能得到f[i - j][ j ]这个方案,然后对于f[i - j][ j ]这个方案加上1,其对应的方案数量仍然和f[i - j][ j ]相等,故直接用f[i - j][ j ]来表示这个情况。

这样我们就得到了:

                                                f[ i ][ j ] = f[i - 1][j - 1] + f[i - j][ j ]

                                           ans = f[ n ][ 1 ] + f[ n ][ 2 ] + f[ n ][ 3] +...... 

#include<iostream>
using namespace std;
const int N = 1000 + 10;
const int mod = 1e9 + 7;

int n;
int f[N][N];

int main() {
	cin >> n;
	
	//也可以初始化0~n的f[i][0] = 0,但体积为0时,f[i][0]的值始终都是f[i-1][0],所以我们可以直接初始化f[0][0] = 1
	f[0][0] = 1;

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= i; j++) {	//i顶多就能分成i个1
			f[i][j] = f[i - 1][j - 1] + f[i - j][j];
			f[i][j] %= mod;
		}
	}
	int ans = 0;

	for (int i = 1; i <= n; i++) {	//最后要把所有情况的数量加起来
		ans += f[n][i];
		ans %= mod;
	}
	cout << ans;

	return 0;
}

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值