青山有一串 s s s ,其中只包含 0 和 1 。
长度为 k k k 的字符串 a a a 当且仅当
a i ≠ a k − i + 1 a_i≠a_{k−i+1} ai=ak−i+1 为所有 i = 1 , 2 , … , k i=1,2,…,k i=1,2,…,k 。对于第 2 组的参赛者,请注意这一条件与问题 B 中的条件不同。
例如, 10 、 1010 、 111000 是好题,而 11 、 101 、 001 、 001100 不是好题。
青山想让 s s s 变好。为此,她最多可以操作 300 次(可能为零)进行以下操作:
在 s s s 的任意位置插入 01 (得到一个新的 s )。请告诉青山,是否有可能使 s s s 变好。如果可能,请打印出使 s s s 变好的操作序列。
输入
输入由多个测试用例组成。第一行包含一个整数
t
(
1
≤
t
≤
100
)
t ( 1≤t≤100 )
t(1≤t≤100) - 测试用例的数量。测试用例说明如下。
每个测试用例的第一行分别包含一个整数 n ( 1 ≤ n ≤ 100 ) n ( 1≤n≤100 ) n(1≤n≤100) - 字符串 s 的长度。
每个测试用例的第二行包含一个长度为 n n n 的字符串 s s s。
可以保证 s s s 只由 0 0 0 和 1 1 1 组成。
输出
对于每个测试用例,如果无法使
s
s
s 变好,则输出
−
1
−1
−1 。
否则,在第一行输出 p ( 0 ≤ p ≤ 300 ) p ( 0≤p≤300 ) p(0≤p≤300) - 运算次数。
然后,在第二行输出 p p p 个整数。 第 i i i 个整数应该是索引 x i ( 0 ≤ x i ≤ n + 2 i − 2 ) x_i ( 0≤x_i≤n+2i−2 ) xi(0≤xi≤n+2i−2)–在当前 s s s 中插入 01 的位置。如果是 x i = 0 x_i=0 xi=0 ,则在 s s s 的开头插入 01 。否则,在 s s s 的 x i x_i xi 字符之后插入 01 。
我们可以证明,在这个问题的约束条件下,如果答案存在,那么总有一个答案最多需要 300 次运算。
此题难点在于对字符串操作的模拟。
首先我们知道要满足这道题的条件, 那么字符串中0和1的个数必须是相同的,其次字符串还必须是偶数长度。
排除这两个不可能的情况之后,就可以说是一定有解的。
就算是在最坏的情况下,也就是有n/2个数是相同的,我们也只需要进行n/2次操作就可以实现。
那么具体的操作流程应该是怎么样?
从两端开始看,如果现在两端是两个1相同,由于我们只能插入01,所以我们可以把这个01插到左边1的左边。
如果现在是两端两个0相同,就可以把01插入到右边0的右边。
重复如此操作就可以。
以上都很好思考出来,但是操作流程的模拟很难实现的。
如果使用双指针就要对字符串本身进行操作,十分繁琐而且极有可能出错。
这里我们可以使用双端队列,因为我们仅仅对两端操作,所以用双端队列来存字符串最好不过。
并且这里注意我们要同时维护字符串的长度和操作到的两端的位置。
CODE:
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
void solve(){
int n;cin >> n;
string str;cin >> str;
deque<char>q;
if(n & 1){
cout << -1 << endl;
return;
}
int cnt0 = 0;
int cnt1 = 0;
for(int i = 0;i < str.size();i++){
q.push_back(str[i]);
if(str[i] == '1')cnt1++;
else cnt0++;
}
if(cnt1 != cnt0){
cout << -1 << endl;
return;
}
vector<int>ans;
int now = 0;
while(q.size()){
if(q.front() == q.back()){
if(q.front() == '1'){
q.push_front('0');
q.push_front('1');
ans.push_back(now);
}else{
q.push_back('0');
q.push_back('1');
ans.push_back(n - now);
}
n+=2;
}else{
q.pop_back();
q.pop_front();
now ++;
}
}
cout << ans.size() << endl;
for(auto t : ans){
cout << t << " ";
}
puts("");
}
int main(){
int T;cin >> T;
while(T--){
solve();
}
return 0;
}