Codeforces Round 906 (Div. 1) A. Qingshan Loves Strings 2 (模拟 + 贪心 + 字符串)

青山有一串 s s s ,其中只包含 0 和 1 。

长度为 k k k 的字符串 a a a 当且仅当

a i ≠ a k − i + 1 a_i≠a_{k−i+1} ai=aki+1 为所有 i = 1 , 2 , … , k i=1,2,…,k i=1,2,,k 。对于第 2 组的参赛者,请注意这一条件与问题 B 中的条件不同。

例如, 10 、 1010 、 111000 是好题,而 11 、 101 、 001 、 001100 不是好题。

青山想让 s s s 变好。为此,她最多可以操作 300 次(可能为零)进行以下操作:

s s s 的任意位置插入 01 (得到一个新的 s )。请告诉青山,是否有可能使 s s s 变好。如果可能,请打印出使 s s s 变好的操作序列。

输入
输入由多个测试用例组成。第一行包含一个整数 t ( 1 ≤ t ≤ 100 ) t ( 1≤t≤100 ) t(1t100) - 测试用例的数量。测试用例说明如下。

每个测试用例的第一行分别包含一个整数 n ( 1 ≤ n ≤ 100 ) n ( 1≤n≤100 ) n(1n100) - 字符串 s 的长度。

每个测试用例的第二行包含一个长度为 n n n 的字符串 s s s

可以保证 s s s 只由 0 0 0 1 1 1 组成。

输出
对于每个测试用例,如果无法使 s s s 变好,则输出 − 1 −1 1

否则,在第一行输出 p ( 0 ≤ p ≤ 300 ) p ( 0≤p≤300 ) p(0p300) - 运算次数。

然后,在第二行输出 p p p 个整数。 第 i i i 个整数应该是索引 x i ( 0 ≤ x i ≤ n + 2 i − 2 ) x_i ( 0≤x_i≤n+2i−2 ) xi(0xin+2i2)–在当前 s s s 中插入 01 的位置。如果是 x i = 0 x_i=0 xi=0 ,则在 s s s 的开头插入 01 。否则,在 s s s x i x_i xi 字符之后插入 01 。

我们可以证明,在这个问题的约束条件下,如果答案存在,那么总有一个答案最多需要 300 次运算。


此题难点在于对字符串操作的模拟。

首先我们知道要满足这道题的条件, 那么字符串中0和1的个数必须是相同的,其次字符串还必须是偶数长度。

排除这两个不可能的情况之后,就可以说是一定有解的。
就算是在最坏的情况下,也就是有n/2个数是相同的,我们也只需要进行n/2次操作就可以实现。

那么具体的操作流程应该是怎么样?
从两端开始看,如果现在两端是两个1相同,由于我们只能插入01,所以我们可以把这个01插到左边1的左边。
如果现在是两端两个0相同,就可以把01插入到右边0的右边。

重复如此操作就可以。

以上都很好思考出来,但是操作流程的模拟很难实现的。
如果使用双指针就要对字符串本身进行操作,十分繁琐而且极有可能出错。

这里我们可以使用双端队列,因为我们仅仅对两端操作,所以用双端队列来存字符串最好不过。

并且这里注意我们要同时维护字符串的长度和操作到的两端的位置。


CODE:

#include<bits/stdc++.h>
using namespace std;
#define endl '\n'

void solve(){
    int n;cin >> n;
    string str;cin >> str;
    deque<char>q;
    if(n & 1){
        cout << -1 << endl;
        return;
    }

    int cnt0 = 0;
    int cnt1 = 0;
    for(int i = 0;i < str.size();i++){
        q.push_back(str[i]);
        if(str[i] == '1')cnt1++;
        else cnt0++;
    }

    if(cnt1 != cnt0){
        cout << -1 << endl;
        return;
    }
    vector<int>ans;
    int now = 0;
    while(q.size()){
        if(q.front() == q.back()){
            if(q.front() == '1'){
                q.push_front('0');
                q.push_front('1');
                ans.push_back(now);
            }else{
                q.push_back('0');
                q.push_back('1');
                ans.push_back(n - now);
            }
            n+=2;
        }else{
            q.pop_back();
            q.pop_front();
            now ++;
        }
    }
    cout << ans.size() << endl;
    for(auto t : ans){
        cout << t << " ";
    }
    puts("");
}

int main(){
    int T;cin >> T;
    while(T--){
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值