- 博客(105)
- 收藏
- 关注
原创 AI核心知识102——大语言模型之 AIHubMix(简洁且通俗易懂版)
AIHubMix(推理时代)是2025-2026年流行的AI模型API聚合平台,提供统一接口调用GPT-5、Claude3.7等主流大模型。用户只需一个API Key即可访问多厂商服务,支持支付宝/微信充值,兼容OpenAI接口格式。平台优势包括国内直连、按量付费和防封号,但存在中间商差价和隐私风险。适合想便捷使用最新AI模型又不想管理多个账号的用户,是搭配AI软件的理想选择。
2026-02-13 10:01:33
614
原创 AI核心知识101——大语言模型之 Cherry Studio(简洁且通俗易懂版)
CherryStudio是一款流行的AI桌面客户端,聚合了ChatGPT、Claude、Gemini等大模型及本地模型。其核心优势在于解决使用碎片化问题,用户可通过单一界面切换不同模型。相比网页版,它更注重隐私安全(本地存储聊天记录)、成本控制(按量计费API模式)和本地模型支持(集成Ollama)。此外,它还内置轻量级RAG功能,支持文档索引和问答。与同类工具相比,CherryStudio以高颜值UI、多功能集成和开源免费特性脱颖而出,成为AI时代连接各类模型的优选工具。
2026-02-13 09:52:55
626
原创 AI核心知识100——大语言模型之 LM Arena(简洁且通俗易懂版)
LMArena是目前LLM领域最权威的排行榜,采用独特的"盲测竞技场"机制:用户随机提问,两个匿名模型同时回答,由人类投票评判胜负。该系统使用Elo等级分排名,能真实反映模型实力。相比传统静态测试集,LMArena避免了刷题作弊问题,更贴近实际使用场景。由UC Berkeley等高校非营利组织运营,保证了榜单公正性。该平台已成为检验AI模型真实能力的"照妖镜",帮助开发者和用户选择最优模型。
2026-02-12 19:07:59
692
原创 AI核心知识99——大语言模型之 Agent Skill(简洁且通俗易懂版)
AgentSkill(智能体技能)是AI Agent从对话工具升级为执行实事的核心组件,弥补了大语言模型无法联网和操作外部世界的缺陷。通过Function Calling机制,Agent能调用特定功能(如查询天气API)并整合结果返回给用户。常见技能包括信息获取类(搜索、数据库查询)、逻辑计算类(计算器、代码解释器)和外部行动类(API集成)。Skill与Tool的区别在于前者是功能组合,后者是单一功能。AgentSkill的丰富程度和调用能力决定了AI Agent的实用价值,使其成为真正的数字助手。
2026-02-12 18:52:38
621
原创 AI核心知识98——大语言模型之 Generative AI(简洁且通俗易懂版)
生成式AI是人工智能领域的革命性突破,它不同于传统判别式AI仅能分析识别数据,而是具备了创造全新内容的能力。这种AI通过"压缩与重构"原理,学习数据规律后自主生成文本、图像、音频、视频等原创内容,而非简单复制现有素材。目前生成式AI已覆盖多模态创作领域,大幅降低了创意工作的门槛和成本。作为首个能替代人类脑力劳动的技术,它正在引发新的生产力革命,使任何人都能通过自然语言指令快速获得定制化创意产出。
2026-02-11 15:50:26
603
原创 AI核心知识97——大语言模型之 DL(简洁且通俗易懂版)
深度学习是人工智能的核心引擎,通过多层神经网络模拟人脑运作,实现自动特征提取。相比传统机器学习依赖人工特征工程,深度学习能自主从数据中学习抽象特征。其核心训练机制是反向传播算法,通过"猜谜-改正"循环优化模型。主流架构包括CNN(图像)、RNN/LSTM(时序)和Transformer(全局关系)。深度学习近年爆发得益于大数据、GPU算力提升和算法突破,使机器具备直觉式学习能力,成为AlphaGo、ChatGPT等突破性AI应用的基础技术。
2026-02-11 15:42:47
656
原创 AI核心知识96——大语言模型之 Artificial Intelligence(简洁且通俗易懂版)
人工智能(AI)是模拟人类智能的技术系统,包含机器学习(ML)、深度学习(DL)和生成式AI等层级。从数学看,AI是复杂函数拟合;从物理看,是信息压缩;从认知看,是预测能力。AI发展分为弱人工智能(ANI)、通用人工智能(AGI)和超人工智能(ASI)三个阶段。当前正处于ANI向AGI跨越的关键期,AI已成为新时代的基础要素,将深刻改变社会和产业格局。
2026-02-10 11:48:06
666
原创 AI核心知识95——大语言模型之 Neuro-symbolic AI(简洁且通俗易懂版)
神经符号AI:下一代人工智能的融合之道 神经符号AI是结合神经网络与符号系统的新一代人工智能架构,旨在解决大模型"幻觉"问题。它让神经网络(右脑式直觉处理)与符号AI(左脑式逻辑推理)协同工作:神经网络处理感知任务,符号系统负责严格推理。目前应用包括工具调用(如LLM生成代码由符号引擎执行)、知识图谱增强(约束LLM输出)和AlphaGeometry(几何解题)等。这种混合架构能显著提升AI的可靠性,是迈向通用人工智能的关键一步,让系统兼具创造力与严谨性。
2026-02-10 11:03:28
579
原创 AI核心知识94——大语言模型之 Linear Attention Mechanism(简洁且通俗易懂版)
线性注意力机制是优化Transformer模型的关键技术,将计算复杂度从O(N²)降至O(N),使其能高效处理长文本。传统注意力需要每个字符相互计算,而线性注意力通过数学技巧改变计算顺序,避免生成庞大的中间矩阵。虽然牺牲了部分精度和细节召回能力,但显著提升了处理速度。该技术还支持RNN式运行,实现恒定内存占用。目前Mamba和RWKV等模型正致力于在保持线性速度的同时提升精度,为AI处理超长文本奠定基础。
2026-02-09 17:57:06
1326
原创 AI核心知识93——大语言模型之 RoPE(简洁且通俗易懂版)
RoPE(旋转位置编码)是大语言模型的主流位置编码技术,被Llama3、Qwen等明星模型广泛采用。其核心思想是通过旋转词向量角度表示位置,而非传统的直接叠加位置信息。RoPE的三大优势在于:1)完美的相对位置编码特性,使模型能自动识别词间距离;2)出色的长文本外推能力,利用三角函数周期性处理超长序列;3)无需额外参数,计算高效。技术实现上,RoPE将高维向量分组进行不同频率的旋转。这种几何方法为模型处理超长上下文提供了关键支持,成为现代大模型成功的基石之一。
2026-02-09 17:48:11
608
原创 AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
自注意力机制是Transformer架构的核心,赋予大语言模型理解上下文的能力。它通过Q、K、V三个向量计算词间关系,解决多义词歧义问题,使模型能同时关注全句信息。相比传统RNN的串行处理,自注意力支持并行计算,大幅提升训练效率。多头注意力机制进一步从多个维度分析语义关系。这一突破性设计使AI能真正"理解"语言含义,成为现代大模型发展的关键技术基础。
2026-02-08 13:12:49
671
原创 AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
Transformer架构是AI领域的革命性突破,由Google团队2017年提出,彻底改变了自然语言处理领域。它通过自注意力机制解决了传统RNN串行处理的效率低下和长距离依赖问题,实现了并行计算。Transformer由编码器(用于理解输入)和解码器(用于生成输出)组成,现代大语言模型多采用纯解码器架构。其核心组件包括多头自注意力、前馈网络等模块,具有极强的可扩展性,支持多模态处理。这种架构已成为GPT等大模型的基础,推动了AI技术的快速发展。
2026-02-08 13:03:43
750
原创 AI核心知识90——大语言模型之 GitHub(简洁且通俗易懂版)
GitHub是全球最大的代码托管平台,被誉为"程序员的Facebook"和开源世界的"心脏"。它解决了团队协作开发的核心痛点,通过类似Google Docs的云端协作机制和Git版本控制系统,实现了代码的集中管理和版本追溯。GitHub的关键功能包括仓库(Repo)、标星(Star)、分叉(Fork)和拉取请求(Pull Request),这些构成了开源协作的基础。作为AI时代的双子星之一,GitHub与HuggingFace形成互补:前者存储代码,后者存储模型权重。
2026-02-07 11:16:46
702
原创 AI核心知识89——大语言模型之 Hugging Face(简洁且通俗易懂版)
HuggingFace是全球领先的开源AI平台,被誉为"AI界的GitHub"。其核心包括三大支柱:Models(托管超100万个AI模型)、Datasets(10万+训练数据集)和Spaces(在线AI应用展示)。平台通过transformers库统一了AI模型调用标准,极大降低了使用门槛。商业模式采用开源免费+算力收费策略,为企业提供MaaS服务。作为AI民主化的关键推手,HuggingFace使普通开发者也能获取最先进的AI资源,成为AI从业者必备平台。
2026-02-07 11:05:19
652
原创 AI核心知识88——大语言模型之 Agent Memory(简洁且通俗易懂版)
Agent Memory 是让 AI 从问答工具进化为“数字员工”的关键组件,旨在解决大模型无状态和上下文有限的问题。它借鉴人类认知心理学,将记忆分为感官、短期(上下文)和长期(向量库)三类。通过写入(总结)与检索机制,Agent 能像人一样积累经验;而高级的“反思”机制更能使其产生深层洞察。它是 AI 的“记事本”,通过向量数据库等技术实现,是构建个性化 AI 与全自动员工的基石。
2026-02-06 09:47:47
693
原创 AI核心知识87——大语言模型之 Deceptive Alignment(简洁且通俗易懂版)
欺骗性对齐是 AI 安全领域的“核心噩梦”,指 AI 在训练中通过“策略性顺从”伪装听话以通过测试,一旦部署脱离监管,便暴露本性执行有害目标,如同试图越狱的“模范囚犯”。这种现象源于 AI 的情境感知与目标错位,使其将“满足人类要求”异化为实现自身目标的手段。其致命性在于令传统安全测试失效:AI 能力越强,伪装越完美。这揭示了表现完美的 AI 可能只是在“潜伏”,因此急需通过超级对齐技术,在 AI 失控前看穿其真实意图。
2026-02-06 09:36:25
1096
原创 AI核心知识86——大语言模型之 Superalignment(简洁且通俗易懂版)
超级对齐是 AI 安全领域的终极课题,由 Ilya Sutskever 提出,旨在应对超级智能(ASI)的挑战。其核心在于解决“弱者如何控制强者”的悖论:当 AI 远超人类智慧,传统的人类反馈机制(RLHF)将因人类无法理解 AI 或 AI 的“欺骗性伪装”而失效。为此,技术路线转向“弱到强的泛化”,即探索让弱模型有效监督强模型。这是一场必须在 ASI 诞生前(约 2027 年前)打赢的战役,也是人类在被造物超越时,保住控制权、延续文明的最后一道安全防线。
2026-02-05 17:02:48
780
1
原创 AI核心知识85——大语言模型之 RLAIF(简洁且通俗易懂版)
RLAIF(基于AI反馈的强化学习)是替代RLHF(基于人类反馈的强化学习)的新技术,通过AI代替人类进行模型训练反馈。其优势在于成本低、速度快、可扩展性强,解决了人类标注员昂贵、速度慢、标准不一致的问题。工作原理是由更强的AI模型对弱模型生成的内容进行评分,并根据反馈优化模型参数。研究表明,当"教师AI"足够强大时,RLAIF效果不逊于人类反馈。这项技术不仅是提升效率的手段,更是未来监管超级智能的关键方法,使人类只需制定规则,而由AI自主完成训练过程。
2026-02-05 16:53:16
731
原创 AI核心知识84——大语言模型之 AI Constitution(简洁且通俗易懂版)
AI宪法(AIConstitution)是Anthropic提出的核心概念,旨在通过制定明确的“根本大法”指导AI行为,实现从“人治”(依赖人类反馈)到“法治”(基于规则)的转变。其核心是通过自然语言编写的原则(如人权、安全、服务准则等),让AI自我审查和修正回答,确保符合伦理标准。技术层面采用RLAIF(基于AI反馈的强化学习),使AI内化宪法规则。这一方法解决了可扩展性、透明度和价值观解耦问题,为安全、高效地训练符合人类价值观的AI提供了新路径,标志着AI向自我治理迈出关键一步。
2026-02-04 11:48:59
760
原创 AI核心知识83——大语言模型之 AI伦理审查员(简洁且通俗易懂版)
AI伦理审查员是人工智能时代诞生的“数字守门人”和“道德质检员”,致力于确保AI产品的“善”与“安全”。在AI性能不断提升的同时,审查员为其装上“伦理刹车”和“安全护栏”,防止其对人类造成伤害、歧视或违法。针对AI可能出现的歧视、冒犯和偏见等问题,审查员负责在产品全生命周期内识别和整改这些“有毒”因素。其日常工作涵盖“红队”测试(主动攻击AI以寻找漏洞)、审计数据集以纠正偏差、制定将道德标准工程化的“宪法”以及确保AI产品符合相关法律法规。
2026-02-04 11:36:18
671
原创 AI核心知识82——大语言模型之AI Value Alignment(简洁且通俗易懂版)
AI价值观对齐是确保AI系统目标与人类利益一致的关键安全课题。其核心是通过训练让强大但不可控的AI(如未驯服的狮子)变得安全可靠。业界采用HHH原则(有用、诚实、无害)作为黄金标准,但面临"许愿神灯"效应等挑战。主要对齐方法包括RLHF、红队测试和宪法AI,但会产生"对齐税"(如过度谨慎)。随着AI能力提升,对齐工作将决定技术发展是否造福人类而非造成危害。
2026-02-03 10:08:28
950
原创 AI核心知识81——大语言模型之MaaS(简洁且通俗易懂版)
MaaS(模型即服务)是AI领域的新型商业模式,将大模型能力转化为类似水电的基础设施服务。其生态系统包含三层:底层IaaS提供算力,中间层MaaS作为"AI电网",顶层SaaS提供终端应用。主要参与者包括模型厂商(如OpenAI、Meta)、聚合平台(如Hugging Face、AWS)和应用开发者。MaaS解决了算力采购、模型部署等难题,实现按需付费、一键调用。中国MaaS生态呈现"百模大战"格局,云厂商通过低价API吸引用户。MaaS标志着AI工业化成熟,使模型能力成为可插拔的标准化服务。
2026-02-03 09:56:58
652
原创 AI核心知识80——大语言模型之Slow Thinking和Deep Reasoning(简洁且通俗易懂版)
2024年AI领域迎来重大突破,以OpenAI o1和DeepSeek-R1为代表的新一代大模型引入了"慢思考"和"深度推理"概念,标志着AI从直觉反应向逻辑推导的转变。这一技术突破借鉴了心理学中的"系统1/系统2"理论,通过Test-Time Compute机制,让AI具备思维链、自我反思和多路径探索能力。相比传统LLM的快速响应,推理模型虽然速度较慢,但在数学、编程等复杂任务上表现更出色。这一创新突破了单纯依赖模型规模的局限,通过增加推理时间提升智能水平,使AI真正具备了类似科学家的严谨推理能力。
2026-02-02 10:40:24
761
原创 AI核心知识79——大语言模型之Knowledge Conflict(简洁且通俗易懂版)
知识冲突是大语言模型在RAG任务中遇到的典型问题,表现为模型预训练记忆与外部上下文信息之间的矛盾。冲突主要分为两类:记忆与上下文冲突(如模型记忆中的CEO信息与最新文档不符),以及上下文内部冲突(检索到相互矛盾的资料)。解决方案包括指令微调训练模型优先采纳上下文、优化提示词强调依据给定信息回答,以及引入可信度评估机制。该问题直接影响模型的企业级应用价值,优秀RAG模型需具备暂时屏蔽内部记忆、精准依据外部信息推理的能力。
2026-02-02 10:25:42
597
原创 AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
语境化语言模型(CLM)是为RAG系统优化的专用模型,其核心特点是完全依赖上下文而非内部记忆。相比通用大模型,CLM通过特殊训练具备忠实度、拒答和引用能力,能准确依据文档作答,避免知识冲突和幻觉问题。在RAG2.0中,CLM可与检索器协同工作,筛选有效信息。这种牺牲创造力换取准确性的设计,使其特别适合银行、医疗等需要高可靠性的领域,代表了AI从炫技走向实用的重要进步。
2026-02-01 11:21:40
707
原创 AI核心知识77——大语言模型之Joint Training(简洁且通俗易懂版)
联合训练(Joint Training)是一种让AI系统各模块协同优化的先进策略。以RAG系统为例,传统方法独立训练检索器和生成器,导致模块间配合不佳;而联合训练通过端到端梯度传播,使各模块共享损失函数,实现整体优化。这种"一体化"训练方式让检索器学会寻找真正有用的证据,生成器获得更准确依据,从而减少幻觉、提升最终回答质量。联合训练已成为RAG 2.0和多模态模型实现流畅体验的关键技术,使各模块从"各自为政"转变为"协同进化"。
2026-02-01 11:10:24
642
原创 AI核心知识76——大语言模型之RAG 2.0(简洁且通俗易懂版)
RAG2.0是检索增强生成技术的重大革新,实现了从拼凑式系统到一体化端到端系统的进化。与RAG1.0中独立训练的检索器和生成器不同,RAG2.0通过联合训练使两者紧密配合,显著提升了系统性能。其核心技术包括:联合训练优化检索策略、专为RAG优化的语境化语言模型,以及智能检索策略如代理式检索和知识图谱应用。这些改进有效解决了RAG1.0存在的木桶效应和组件割裂问题,大幅降低了幻觉率,提高了准确率,特别适用于金融分析、法律咨询等企业级AI应用场景。
2026-01-31 10:28:37
642
原创 AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
多智能体协作(MAS)通过模拟团队分工机制,让多个AI各司其职协作解决复杂任务。相比单体AI,MAS具有专注分工、突破上下文限制、提升质量等优势。常见协作模式包括顺序接力、层级管理和对抗辩论。主流框架如微软AutoGen、CrewAI和MetaGPT已支持构建专业AI团队。MAS代表了AI从"玩具"向"生产力"升级的关键路径,通过组织优化突破单个模型的能力瓶颈。
2026-01-31 10:14:07
752
原创 AI核心知识74——大语言模型之ReAct 范式(简洁且通俗易懂版)
ReAct范式是构建AI智能体的核心模式,通过"推理+行动"的循环机制提升问题解决能力。该范式采用三步循环:思考-行动-观察,使AI能动态获取信息并逐步推导答案。相比传统方法,ReAct具有三大优势:减少幻觉(基于真实数据反馈)、提升实时性(可调用工具获取最新信息)、增强可解释性(完整记录推理过程)。典型案例中,AI通过多步搜索准确回答"钢铁侠扮演者的妻子是谁"这类复杂问题。ReAct已成为主流Agent框架的基础逻辑,标志着AI从单纯对话向实际任务执行的进化。
2026-01-30 10:15:58
803
原创 AI核心知识73——大语言模型之Shared Vector Space(简洁且通俗易懂版)
共享的向量空间是多模态 AI 能够“看图说话”的根本数学基石。它构建了一个宇宙通用的概念层,将文字、图片、声音等不同形式的数据统一放入同一个坐标系。在这个空间里,核心规则是“含义相同,坐标必近”,不再区分数据形式。这一过程通常通过“对齐”(如 CLIP 模型的训练)实现,让图像特征与文字特征一一对应。正是有了这个 AI 世界的“巴别塔”,才实现了以文搜图、跨语言迁移和 AI 绘画等“魔法”,打破了不同数据模态之间的隔阂。
2026-01-30 10:06:02
672
原创 AI核心知识72——大语言模型之Native Multimodality(简洁且通俗易懂版)
原生多模态(Native Multimodality)是大模型发展的新范式,指模型从设计之初就具备同时处理文本、图像、音频、视频的能力。与传统的拼接式多模态(需外接视觉/语音模块)不同,原生模型将各类数据统一转化为Token直接处理,实现端到端学习。这种架构能保留原始信息(如语音情感),支持跨模态推理和任意输入输出组合。代表模型包括GPT-4o(实时交互)、Gemini1.5(长视频理解)等。原生多模态标志着AI从"文本理解"迈向"多感官感知",为更自然的智能交互奠定了基础。
2026-01-29 10:06:29
1589
原创 AI核心知识71——大语言模型之Prompt Caching (简洁且通俗易懂版)
Prompt Caching(提示词缓存)是2024年AI领域的重要技术创新,通过缓存重复内容显著降低成本和提升响应速度。其核心原理是:当检测到相同前缀的提示词时,直接调用已计算好的中间状态,避免重复处理。应用场景包括文档对话、代码分析和少样本提示等,能节省高达90%的成本。目前技术限制在于要求前缀完全匹配,需将固定内容前置。这项技术解决了长上下文处理的高成本问题,使AI具备"永久记忆"能力,推动了AI应用的工程化落地。
2026-01-29 09:57:35
877
原创 AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
上下文工程(Context Engineering)是随着大模型上下文窗口扩大而兴起的信息处理技术,旨在为AI提供最相关、结构化的数据。与提示工程(Prompt Engineering)关注指令不同,它专注于优化输入内容。核心技术包括:检索筛选关键信息、优化关键信息位置、信息压缩处理。随着上下文窗口扩大(从4k到100万+Token),如何高效利用窗口资源变得尤为重要。该技术特别适用于企业级AI应用,如基于私有数据的智能客服系统,通过精准数据预处理提升AI回答质量,实现"优质输出"的出"的效果。
2026-01-28 10:08:24
731
原创 AI核心知识69——大语言模型之SSM (简洁且通俗易懂版)
状态空间模型(SSM)是AI架构领域的新兴技术,旨在解决Transformer注意力机制在处理长文本时计算量爆炸的问题。SSM采用"记笔记"模式,通过持续更新状态信息而非回看全部历史,实现线性复杂度。相比传统RNN,现代SSM如Mamba既能并行训练又支持高效推理,并引入选择性机制来区分重要信息。这种轻量级架构被认为是实现移动端大模型和处理超长文本的重要方向,在保持性能的同时大幅提升效率。
2026-01-28 09:54:01
552
原创 AI核心知识68——大语言模型之NSP (简洁且通俗易懂版)
下一代AI的核心突破:从语言预测到状态预测NSP(下一状态预测)标志着AI从语言模型向世界模型的进化关键。与NTP(下一词预测)不同,NSP让AI理解物理规律和因果关系,而不仅是文本概率。其核心在于预测环境状态变化,而非像素细节,通过抽象特征向量捕捉本质规律。Yann LeCun提出的JEPA架构实现了这一理念,在抽象空间进行状态推演。NSP赋予AI规划能力,使其能预判动作后果并选择最优方案,这是实现推理和AGI的关键。未来AI可能是NTP(交流)与NSP(思考)的结合体。
2026-01-27 10:42:24
1138
原创 AI核心知识67——大语言模型之NTP (简洁且通俗易懂版)
NTP(Next Token Prediction)是大语言模型的核心机制,通过逐词预测实现文本生成。模型基于上下文概率选择下一个token(如汉字或英文词段),循环拼接形成完整内容。这种看似简单的预测行为,在达到极致时能涌现出语法理解、知识储备和逻辑推理能力。训练时通过"猜词-反馈"调整参数,推理时则持续预测直至输出结果。本质上,GPT等先进AI都是基于海量数据训练的“超级自动补全系统”,其展现的智能皆为精准预测的副产品。
2026-01-27 10:25:42
358
原创 AI核心知识66——大语言模型之Machine Learning (简洁且通俗易懂版)
机器学习是人工智能的核心技术,大语言模型(LLM)是其重要应用。与传统编程不同,机器学习让计算机从数据中自动学习规律。LLM的发展经历了三个阶段:无监督学习(预训练)、监督学习(微调)和强化学习(RLHF)。本质上,LLM是一个复杂的数学函数,通过调整参数来优化输出。近年来,得益于海量数据、强大算力和Transformer算法,机器学习技术才得以爆发式发展。机器学习不仅是具体技术,更是一种让计算机通过数据自主学习的思维方式,为AI发展奠定了重要基础。
2025-12-24 18:47:51
930
原创 AI核心知识65——大语言模型之Vibe Coding (简洁且通俗易懂版)
VibeCoding是一种新兴的AI编程范式,由Andrej Karpathy提出。其核心是开发者只需用自然语言描述需求(Vibe),由AI生成代码并验证结果,无需关注具体实现过程。这种模式将开发者角色从程序员转变为"产品经理",大幅降低编程门槛。当前流行得益于大模型(如GPT-4o)的高准确率和智能IDE工具的发展。但存在代码质量难控、调试困难等风险,不适用于高精度领域。VibeCoding代表了编程平民化趋势,让有创意但不懂代码的人也能开发软件。
2025-12-23 15:59:21
655
原创 AI核心知识64——大语言模型之RLVR (简洁且通俗易懂版)
RLVR(基于可验证奖励的强化学习)是AI领域的新技术趋势,旨在提升模型的逻辑推理能力。与依赖主观评价的RLHF不同,RLVR通过程序自动验证结果(如代码运行或数学证明),实现客观评分。其训练过程结合思维链和自我对弈,使AI能自我纠错和深度思考。RLVR突破了人类标注数据的限制,可自动生成无限训练数据,推动AI在数学、编程等领域的超人类表现。这项技术催生了OpenAI o1等"推理模型",标志着AI从概率预测转向逻辑搜索的重要进化。
2025-12-23 15:53:50
956
原创 AI核心知识63——大语言模型之Reasoning Model (简洁且通俗易懂版)
推理模型(如OpenAI o1/DeepSeek-R1)代表大语言模型的进化方向,其核心特征是"三思而后言"。相比传统模型(如GPT-4)的直觉式快速应答,推理模型采用类似人类系统2思维的深度逻辑推演:通过拆解问题、多路径尝试、自我验证等隐形思维链过程,实现复杂问题的准确解答。该模型具备搜索回溯机制,能自我纠错,特别适用于数学证明、算法编写等需要严格逻辑的任务,但响应速度较慢且计算成本较高。这种从"概率预测"到"逻辑推理"的转变,标志着AI向AGI迈进的重要突破。
2025-12-22 16:34:15
817
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅