
数据分析
文章平均质量分 88
学习日记
python_chai
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python数据可视化利器:Matplotlib从入门到实战全解析
本文系统介绍了Python数据可视化库Matplotlib的核心功能与应用技巧。主要内容包括:1.基础绘图入门:折线图绘制与中文显示设置;2.多子图绘制方法:subplot和subplots的灵活运用;3.常用图表类型:直方图、散点图、柱状图、矩阵可视化的实现;4.样式定制:全面讲解颜色、标记和线型的组合使用;5.高级定制:刻度、标签、图例等元素的精细控制。文章通过大量代码示例演示了各种图表的绘制方法,并提供了实战案例展示综合应用。最后建议学习其他可视化库如Seaborn、Plotly等,以进一步提升数据可原创 2025-08-21 21:16:53 · 822 阅读 · 0 评论 -
Pandas 数据处理核心操作:合并、替换、统计与分组
本文介绍了Pandas中四大核心数据处理功能:数据合并(merge)支持不同连接方式处理数据;值替换(replace)实现单/多值替换;统计计算提供sum/max/mean等方法;分组聚合(groupby)支持多种分组方式。通过实例代码展示了这些功能的典型应用场景,为数据分析提供了高效工具。这些操作能有效解决数据整合、清洗、统计分析等常见需求,是Pandas数据分析的重要组成部分。原创 2025-08-20 19:38:51 · 956 阅读 · 0 评论 -
Pandas 入门到实践:核心数据结构与基础操作全解析(Day1 学习笔记)
Pandas是Python中强大的数据分析工具集,基于NumPy构建,提供高效的数据结构和处理功能。其核心数据结构包括Series(一维数组)和DataFrame(二维表格),支持多种创建方式和数据访问方法(如loc/iloc索引)。Pandas能有效处理缺失数据(检测、删除或填充),并支持级联操作(pd.concat)合并数据集。该工具集广泛应用于数据清洗、分析和挖掘,是处理结构化数据的重要选择。原创 2025-08-19 21:02:55 · 853 阅读 · 0 评论 -
数据分析入门必备:从基础概念到 NumPy 实战全解析
本文介绍了数据科学相关的核心概念与技术工具。主要内容包括:1)NumPy库的基础用法,涵盖数组创建、属性操作、随机数组生成、排序去重等核心功能;2)DIKW数据价值体系,从数据到智慧的转化过程;3)数据工程职业划分及技能要求;4)数据分析的定义、流程、应用场景和常用工具;5)数据建模的分类与常用模型。重点讲解了NumPy的多维数组操作,包括数组创建、索引切片、聚合运算、矢量计算等核心功能,并对比了不同数据分析工具的特点。原创 2025-08-19 19:53:34 · 812 阅读 · 0 评论 -
从单表到多表,SQL 查询入门到进阶(上篇)—— 基础操作与核心语法全解析
本文系统介绍了SQL查询的基础语法与应用场景,涵盖五大核心内容:1)基础查询(全表、指定字段、别名、去重);2)限定查询(比较、范围、模糊、多值匹配等12种条件筛选);3)排序查询(单/多字段升序降序);4)多表查询(笛卡尔积、关联消除、表别名);5)连接查询(SQL1999标准的内连接、自连接、左右外连接)。重点比较了传统多表查询与标准JOIN语法的优劣,强调JOIN语法在可读性、灵活性和规范性方面的优势,特别适合处理复杂表关联和缺失数据场景。文章通过大量示例演示各类查询的实际应用,是掌握SQL数据检索操原创 2025-08-18 00:15:00 · 961 阅读 · 0 评论 -
从数据汇总到高级分析,SQL 查询进阶实战(下篇)—— 分组、子查询与窗口函数全攻略
WHERE 子查询:适用于将子查询结果作为条件,直接筛选主查询数据,语法简洁,适合简单条件判断。FROM 子查询:适用于复杂数据预处理,通过临时表分层处理逻辑,便于维护和性能优化。两者可结合使用,实现更复杂的业务需求(如子查询嵌套、多表关联等)。八、SELECT查询定义SELECT是 SQL 中用于从表中提取数据的基础关键字,所有查询操作均以SELECT开头,决定返回哪些字段及如何展示。(一)、SELECT 查询的基础用法字段选择规则可选择表中所有字段:用表示(如。原创 2025-08-18 20:53:42 · 2090 阅读 · 0 评论