【算法笔记】 树形DP算法总结

定义:树形DP也叫树状DP,即在树上进行的DP,是DP中较为复杂一类

1:主体

即like拓扑排序,从叶子节点向上更新其父节点,从而进行dp,确保先更新的子节点去更新其父节点,一般使用dfs形式:

void dfs(ll u,ll fa)
{
	dp[u]=1;
	for(auto c:G[u])
	{
		if(c!=fa)
		{
			dfs(c,u);
			dp[u]+=dp[c];
		}
	}
}

【例1.2】洛谷P1352 没有上司的舞会

//P1352 没有上司的舞会
//2024.3.27 12:38

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const ll N = 500005;
#define mod 1000000007
#define inf 1e18
#define YES cout<<"YES"<<'\n';
#define NO cout<<"NO"<<'\n';
#define lc p<<1
//左子节点
#define rc p<<1|1

vector<ll>a[N],sz(N),f(N),g(N),rot(N);
void dfs(ll u,ll fa)
{
	//sz[u]=1;
	for(auto c:a[u])
	{
		if(c!=fa)
		{
			dfs(c,u);
			f[u]+=g[c];//选择了u就不能选择他儿子
			g[u]+=max(g[c],f[c]);//不选择u也可以不选择儿子,也可以选择
		}
	}
}
void solve()
{
	ll n;cin>>n;
	for(ll i=1;i<=n;i++) cin>>sz[i],f[i]=sz[i];//初始化每个人的兴趣度
	for(ll i=1;i<n;i++)
	{
		ll x,y;cin>>x>>y;
		a[x].push_back(y);
		a[y].push_back(x);
		rot[y]++;
	}
	ll d=0;
	for(ll i=1;i<=n;i++)
	{
		if(!rot[i])
		{
			d=i;//找boss
			break;
		}
	}
	dfs(d,0);
	cout<<max(g[d],f[d])<<'\n';
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	//ll t;cin>>t;
	//while(t--) 
	solve();
	return 0;
}

2:树形背包

3:换根DP

树形动态规划(Tree DP)是一种解决树状结构问题的算法思想。它利用了树这种特殊的数据结构的性质进行求解,常用来解决树的最优路径、最大值、最小值等类型的问题。 在夜深人静的时候写算法,我通常会采用以下步骤来完成树形dp的实现: 第一步是定义状态。我们首先需要确定问题的状态表示方式。对于树形dp来说,常用的状态表示方式是以节点为单位进行表示。我们可以定义dp[i]表示以节点i为根的子树的某种性质,比如最大路径和、最长路径长度等。 第二步是确定状态转移方程。根据问题的特点,我们需要找到状态之间的关系,从而确定状态转移方程。在树形dp中,转移方程常常与节点的子节点相关联。我们可以通过遍历节点的子节点,利用它们的状态来更新当前节点的状态,从而得到新的状态。 第三步是确定初始条件。在动态规划中,我们需要确定初始状态的值。对于树形dp来说,我们可以选择将叶节点作为初始状态,然后逐步向上更新,最终得到整棵树的最优解。 第四步是确定计算顺序。树形dp的计算通常是从根节点开始,自顶向下逐步计算,直到达到叶节点。因为树形dp的计算过程中需要利用到子节点的状态来更新当前节点的状态,所以必须按照计算顺序进行。 夜深人静时,写算法树形dp是相对较复杂的算法,需要仔细思考问题的状态表示方式,转移方程以及初始条件。在实现过程中,可以采用递归的方式进行代码编写,或者利用栈等数据结构进行迭代实现。 总的来说,夜深人静写算法树形dp需要耐心和细心,经过思考和实践,才能顺利解决树状结构问题。但是,一旦理解并掌握了树形dp的思想和方法,就能够高效地解决各种树形结构问题,提升算法的效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值