- 博客(7)
- 收藏
- 关注
原创 房天下数据爬取
提取房天下(https://sz.esf.fang.com/)广州各市的房价信息,由于城市和页数都较多,故可能会有反爬,可以修改代码,一次爬取部分城市,多爬几次。
2025-07-27 15:39:07
212
原创 插值--一维插值
给定一组数据,需要确定满足特定要求的曲线,如果所求曲线通过所给定的有限个数据点,这就是插值。已知未知函数在n+1个互不相同的观测点 x0,x1,⋯ ,xnx_0, x_1, \cdots, x_nx0,x1,⋯,xn 处的函数值(或观测值):yi=f(xi),i=0,1,⋯ ,n.y_i = f(x_i), i = 0, 1, \cdots, n.yi=f(xi),i=0,1,⋯,n.寻求一个近似函数(即近似曲线)ϕ(x)\phi(x)ϕ(x),使之满足ϕ(xi)=yi,i=0,1,⋯ ,n
2025-07-27 01:36:13
776
原创 思考-数据预处理
在这五位专家中,其平均得分是最低的,虽然标准差不是最小的,但综合来看,较低的平均分表明其打分整体水平相对其他专家更倾向于给出较低分数,所以可以判断专家甲打分比较严格。专家乙和专家丙的平均值较为接近所有专家的平均水平,且标准差相对较小,打分比较稳定;较高的平均分意味着该专家在打分时倾向于给出较高的分数,并且打分的波动程度不是特别大,所以可以认为专家戊打分比较宽松。计算每位专家打分的平均值和标准差。专家乙、丙、丁的平均得分处于中间范围,相比之下,他们打分的严格或宽松程度不如专家甲和专家戊表现得那么明显。
2025-07-26 23:40:52
805
原创 关联规则分析
关联分析是指关联规则挖掘,它是数据挖掘中一个重要的、高度活跃的分支。目标:发现事务数据库中不同项(如顾客购买的商品项)之间的联系,这些联系构成的规则可以帮助用户找出某些行为特征(如顾客购买行为模式),以便进行企业决策。设I={i1,i2,…,im}I=\{i_1,i_2,…,i_m\}I={i1,i2,…,im}是一个全局项的集合,其中ij(1≤j≤m)i_j(1≤j≤m)ij(1≤j≤m)是项(item)的唯一标识,jjj表示项的序号。事务数据库:D={t1,t2,…,tn}D=\{t_1,
2025-03-20 15:51:17
850
空空如也
胸部CT及掩码数据集
2025-08-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人