《数据结构》最短路径Dijkstra算法

                                                              最短路径Dijkstra算法分析

生长点

A

B

C

D

E

F

P(A)=FA

D(A)=130

P(B)=FB

D(B)=24

P(C)=FC

D(C)=10

P(D)=——

D(D)=无穷

P(E)=——

D(E)=无穷

C

P(A)=FA

D(A)=130

P(B)=FB

D(B)=24

P(D)=FCD

D(D)=16

P(E)=FCE

D(E)=62

D

P(A)=FA

D(A)=130

P(B)=FB

D(B)=24

P(E)=FCE

D(E)=62

B

P(A)=FBA

D(A)=80

P(E)=FBE

D(E)=50

E

P(A)=FBEA

D(A)=60

A

                                                          * 图的存储方式为邻接表*

符号解释: 

P(A):以当前生长点到A的最短路径

D(A):P(A)路径长度的权值和

过程解释:

1.以F为生长源点,与F的邻接点有A,B,C。

2.其中FC的路径长度最短,以C为新的生长点。

C的临接点有B,D,E:

(1)F直接到B的路径长度为24,F经过C到B的路径长度为27,直接到B的路径长度短,不作路径更新。同理,

(2)F到D的路径长度更新为10+6=16。

(3)F到E的路径长度更新为10+52=62。

3.其中FCD的路径长度最短,以D为新的生长点。

D的邻接点有F,显然成环回到起点,不做更新。

4.其中FB的路径长度最短,以B为新生长点,B的邻接点有A,E:

(1)从F经B到A的路径长度为24+56=80,显然小于直接从F到A的路径长度。故做更新。

(2)FBE路径长度为24+26=50<62(FCE)。故做更新。

5.其中FBE的路径最短,以E为新生长点,E的邻接点为A。

FBEA的路径长度为24+26+10=60<80(FBA)。故做更新。

至此,所有非源点的最短路径找到,过程结束。

简易代码描述:

void shortpath_dijkstra(L[M], int n, int s) // L[M],n顶点数,s源点号
{
	// 设置待定路径初值
	for (int i = 0; i < n; i++)
	{
		L[i].path = L[s].name; // 初始化路径为源点
		L[i].dist = MAX;       // 初始化距离为最大值
		L[i].mark = 0;        // 初始化标记为未访问
	}
	
	// 设置 s 为源点
	L[s].mark = 1;
	L[s].dist = 0;
	
	// 更新源点的直接邻接边的距离
	ArcNode *p = L[s].firstarc;
	while (p != NULL)
	{
		int w = p->adjvex;
		L[w].dist = p->cost;
		L[w].path = L[s].name + L[w].name; // 更新路径
		p = p->next;
	}
	
	for (int i = 0; i < n - 1; i++) // n - 1次 
	{
		int k = -1;
		int d = MAX;
		
		// 找到未标记的最近顶点
		for (int j = 0; j < n; j++)
		{
			if (L[j].mark == 0 && L[j].dist < d) // 修正索引
			{
				k = j;
				d = L[j].dist;
			}
		}
		
		if (k == -1) break; // 如果没有找到可访问的节点,提前退出。
		
		L[k].mark = 1; // 标记为已访问
		
		// 更新与 k 相连的未标记顶点的距离和路径
		p = L[k].firstarc;
		while (p != NULL)
		{
			int w = p->adjvex;
			if (L[w].mark == 0 && L[w].dist > L[k].dist + p->cost)
			{
				L[w].path = L[k].path + L[w].name; // 更新路径
				L[w].dist = L[k].dist + p->cost; // 更新距离
			}
			p = p->next;
		}
	}
}

代码分析

  1. 初始化:

    • 代码开始时对每个顶点的 pathdist 和 mark 进行了初始化。
    • path 存储了从源点到该顶点的路径,dist 存储了源点到该顶点的距离,mark 用于标记该顶点是否已被访问。
  2. 设置源点:

    • 将源点的 mark 设置为 1,表示已访问,并将其 dist 设置为 0。
  3. 更新邻接顶点的距离:

    • 使用 p 遍历源点的所有邻接边,更新相邻顶点的距离。
  4. 主循环:

    • 在主循环中,找到未被访问的顶点中距离最小的一个顶点 k,并将其标记为已访问。
    • 然后,更新从 k 到其邻接顶点的最短路径。

本文参考陈卫卫老师课程。 

  • 21
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dijkstra算法是一种用于解决赋权图的单源最短路径问题的算法。它使用类似广度优先搜索的方法,通过不断更新节点的距离来找到最短路径。以下是使用C/C++语言实现Dijkstra算法的示例代码: ```c #include <stdio.h> #include <limits.h> #define V 9 int minDistance(int dist[], bool sptSet[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) { if (sptSet[v] == false && dist[v] <= min) { min = dist[v]; min_index = v; } } return min_index; } void printSolution(int dist[]) { printf("Vertex \t Distance from Source\n"); for (int i = 0; i < V; i++) { printf("%d \t\t %d\n", i, dist[i]); } } void dijkstra(int graph[V][V], int src) { int dist[V]; bool sptSet[V]; for (int i = 0; i < V; i++) { dist[i] = INT_MAX; sptSet[i] = false; } dist[src] = 0; for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, sptSet); sptSet[u] = true; for (int v = 0; v < V; v++) { if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; } } } printSolution(dist); } int main() { int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0}, {4, 0, 8, 0, 0, 0, 0, 11, 0}, {0, 8, 0, 7, 0, 4, 0, 0, 2}, {0, 0, 7, 0, 9, 14, 0, 0, 0}, {0, 0, 0, 9, 0, 10, 0, 0, 0}, {0, 0, 4, 14, 10, 0, 2, 0, 0}, {0, 0, 0, 0, 0, 2, 0, 1, 6}, {8, 11, 0, 0, 0, 0, 1, 0, 7}, {0, 0, 2, 0, 0, 0, 6, 7, 0}}; dijkstra(graph, 0); return 0; } ``` 这段代码实现了Dijkstra算法来找到从源节点到图中所有其他节点的最短路径。它使用邻接矩阵来表示图的结构,并使用数组来存储节点之间的距离。在主函数中,我们定义了一个9x9的图,并将源节点设置为0。然后调用dijkstra函数来计算最短路径,并打印结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值