高数下册第九章多元函数微分学与积分学

目录

前言

二元(多元)函数极限连续

相同点

不同点

二元(多元)函数偏导数和全微分

相同点

不同点

多元函数求导法则

相同点

不同点

偏导数在几何的应用

多元函数的极值和最值

不同点


前言

  1. 这一章主要以二元函数为例子,讲解多元函数,但是是以一元函数为基础,其脉络大纲也是和一元函数类似

  2. 一元函数讲了什么呢

    1. 极限连续

    2. 导数微分

    3. 积分

    4. 一些与物理,几何的联系

  3. 这里也以这样的脉络大纲进行展开,下列部分内容会和一元函数对比,便于理解


二元(多元)函数极限连续

  1. 相同点

    1. 求极限的方式比较类似,都有换元,两面夹,恒等变形
    2. 最值定理,介值定理仍然适用
  2. 不同点

    1. 二元函数是一个面,可以通过无数条线(这里可以类比一元函数0+和0-)趋向(a,b),所以这个可以说明某个极限不存在

二元(多元)函数偏导数和全微分

  1. 相同点

    1. 求导规则不变
    2. 定义同样用极限定义的
  2. 不同点

    1. 可导和连续之间没有必然的联系
    2. 偏导数计算:求x的偏导数把y当作常数
    3. 全微分
      1. 可微必可偏导
      2. 有偏导且偏导连续必然可微

      3. 多元函数求导法则

        1. 相同点(排版有问题)

          1. 都具有链式法则,微分形式不变性,隐函数求导
          2. 不同点

            1. 链式法则:求导其实只给了某些特定基础函数的导数,但是我们求导往往不是那些基础函数,怎么办,只能想到链式法则
              1. 中间变量是一元的(其实这个在高数上本身就学过了,可以用某些高数上的知识解决,此时还没有涉及二元)
              2. 中间变量二元的,画图然后求导
              3. 注意f’11,指的是对于第一个变量(u)求导两次
            2. 隐函数求导
              1. 一元隐函数;这个其实在高数上册也可以解决,但是这样引入简便运算了
              2. 二元隐函数:双侧求导,然后克莱姆法则进行求解
              3. 难点:什么时候把z当作常数,什么时候把又把z看成关于x,y的函数?看上方对谁求导,如果是对f求导,这个时候xyz的地位是相同的,但是如果是z,那么求导z求导不是0,而是z对x的导数


偏导数 在几何的应用

  1. 曲线:切线,法平面
  2. 平面:法线,切平面

多元函数的极值和最值

  1. 不同点

    1. 极值点不是驻点,驻点也不是极值点,但是对于偏导数存在的函数,极值点必为驻点
    2. 极值存在的充分条件
    3. 条件极值
      1. 本质,将你所求的函数极值约束在一个特定的曲线上去求
      2. 方法,拉格朗日乘数法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值