目录
前言
-
这一章主要以二元函数为例子,讲解多元函数,但是是以一元函数为基础,其脉络大纲也是和一元函数类似
-
一元函数讲了什么呢
-
极限连续
-
导数微分
-
积分
-
一些与物理,几何的联系
-
-
这里也以这样的脉络大纲进行展开,下列部分内容会和一元函数对比,便于理解
二元(多元)函数极限连续
-
相同点
- 求极限的方式比较类似,都有换元,两面夹,恒等变形
- 最值定理,介值定理仍然适用
-
不同点
- 二元函数是一个面,可以通过无数条线(这里可以类比一元函数0+和0-)趋向(a,b),所以这个可以说明某个极限不存在
- 二元函数是一个面,可以通过无数条线(这里可以类比一元函数0+和0-)趋向(a,b),所以这个可以说明某个极限不存在
二元(多元)函数偏导数和全微分
-
相同点
- 求导规则不变
- 定义同样用极限定义的
-
不同点
- 可导和连续之间没有必然的联系
- 偏导数计算:求x的偏导数把y当作常数
- 全微分
- 可微必可偏导
- 有偏导且偏导连续必然可微
-
多元函数求导法则
-
相同点(排版有问题)
- 都具有链式法则,微分形式不变性,隐函数求导
-
不同点
- 链式法则:求导其实只给了某些特定基础函数的导数,但是我们求导往往不是那些基础函数,怎么办,只能想到链式法则
- 中间变量是一元的(其实这个在高数上本身就学过了,可以用某些高数上的知识解决,此时还没有涉及二元)
- 中间变量二元的,画图然后求导
- 注意f’11,指的是对于第一个变量(u)求导两次
- 隐函数求导
- 一元隐函数;这个其实在高数上册也可以解决,但是这样引入简便运算了
- 二元隐函数:双侧求导,然后克莱姆法则进行求解
- 难点:什么时候把z当作常数,什么时候把又把z看成关于x,y的函数?看上方对谁求导,如果是对f求导,这个时候xyz的地位是相同的,但是如果是z,那么求导z求导不是0,而是z对x的导数
- 链式法则:求导其实只给了某些特定基础函数的导数,但是我们求导往往不是那些基础函数,怎么办,只能想到链式法则
-
偏导数 在几何的应用
- 曲线:切线,法平面
- 平面:法线,切平面
多元函数的极值和最值
-
不同点
- 极值点不是驻点,驻点也不是极值点,但是对于偏导数存在的函数,极值点必为驻点
- 极值存在的充分条件
- 条件极值
- 本质,将你所求的函数极值约束在一个特定的曲线上去求
- 方法,拉格朗日乘数法