- 博客(15)
- 问答 (1)
- 收藏
- 关注
原创 李沐深度学习
但这样会有一个问题,在bert训练时候可以通过<mask>来学习,但是在下游任务微调的时候,也就是fine-tuning时候,数据中没有<mask>这个东西,所以有了下面的东西。迁移学习前做好的工作所抽取的特征是个比较底层的特征,一般当作embedding用,做自己的工作时需要构建新的网络来抓取新任务需要的信息。最终,模型会生成一个对应于 <cls> 的输出向量,这个向量包含了对整个句子对的理解。想研发相似于CV方面的,基于微调的NLP模型,除了输出层,其他层的参数我是可以复用的,我可以挪到其他任务中去。
2024-10-07 21:08:36 359
原创 Python开发学习路线
Python学习路线一:Python基础Linux基础,Python基础语法,Python字符串,文件操作,异常处理,Python面向对象,项目实战。
2024-09-25 10:48:03 469
原创 垂直领域中al大模型项目的策略
如果垂直领域存在不通用的知识,垂直领域中的知识具有特殊性,不能完全由通用大模型来表达,那么就需要有更专业的模型对领域中专业知识进行抽象,垂直领域中的knowhow需要有针对性的算法,此时的算法也就必须有相应的独特性,其向量空间就需要满足专业知识的要求,要与领域专业知识模型紧密结合,从而直接决定了应用的表现,这样就需要在应用系统建设中采用。通用大模型是对普遍知识的抽象,如果垂直领域的知识模型可以完全由通用大模型支撑,那么基于通用大模型构建领域应用是完全可行的,此时的算法可以被看做是行业应用中的公共基础软件。
2024-09-19 16:12:23 862
原创 人工智能在医疗领域的十大应用场景
基于超过千亿精细化Token训练,满足高质量数据要求和精细化数据处理,为医学科研、临床辅助等方面进行赋能,新一代科研数据平台能够从AI阅读总结文献、自然语言病历搜索到智能数据加工、自动化统计分析、论文初稿智能生成等全面支持临床科研人员,将科研产出论文周期从6-12个月加速至1-2月。该大模型拥有380亿参数量,基于中医药海量文本数据预训练,结合向量库检索强化,以及中药研发多场景的微调,能够更好地帮助研究者完成中医药理论证据的挖掘和总结,推动中医药现代化发展。AI大模型辅助流行病学的大数据分析及趋势判断。
2024-09-19 09:14:21 2002
原创 人工智能学习路径
项目演练:人脸检测数据源制作与网络训练(基于Caffe)项目演练:关键点检测第一阶段网络训练(基于Caffe)项目演练:关键点检测第二阶段模型实现(基于Caffe)项目演练:LSTM情感分析(基于Tensorflow)项目演练:对抗生成网络(基于Tensorflow)项目演练:机器人写唐诗(基于Tensorflow)项目演练:文本分类实战(基于Tensorflow)项目演练:强化学习基础(基于Tensorflow)4.凸优化(看不懂不要紧,掌握基础即可)项目演练:实现人脸检测(基于Caffe)
2024-09-17 09:03:23 1072
原创 python数据分析与可视化学习大纲
在数据分析领域,可视化不仅是数据展示的手段,更是数据探索和解释的重要工具。Python作为一门功能强大的编程语言,拥有众多优秀的库来支持数据分析与可视化,如Pandas、Matplotlib、Seaborn、Pyecharts等。Pandas是Python中用于数据分析的核心库,提供了快速、灵活和表达力强的数据结构,旨在使“关系”或“标签”数据的处理工作变得既简单又直观。此外,Seaborn还提供了许多用于统计数据可视化的函数,如分布图、关系图、分类图等,这些函数能够更直观地展示数据的统计特性和关系。
2024-09-17 08:42:02 926
原创 机器学习与深度学习间关系与区别
定义深度学习(Deep Learning, DL)是机器学习的一个分支,它利用多层神经网络对数据进行特征提取和模式识别。深度学习通过构建和训练多层神经网络,能够自动从数据中提取高层次的抽象特征,从而在图像识别、语音识别、自然语言处理等领域取得了显著的成果。深度学习的基础结构1. 人工神经网络(Artificial Neural Networks, ANN)ANN是深度学习的基础结构,模仿生物神经网络的工作原理,由输入层、隐藏层和输出层组成。
2024-09-16 10:19:29 1953
原创 鸢尾花的数据分析(使用tf.leras)
隐藏层:激活函数是relu,输入大小为input_shape指定。#通过madel.summary查看模型架构。#设置模型相关参数,优化器,损失函数和评价指标。#将iris转换为dataframe数据。#利用sequential方式构建模型。#隐藏层2,激活函数是relu。#tf.keras中使用的相关工具。#将数据集划分为训练集和测试集。#sklearn中相关工具。#将数据之间关系进行可视化。#使用tf.keras实现。#构建模型的层和激活方法。#划分训练集和数据集。#数据处理和辅助工具。
2024-08-28 11:22:01 1306
原创 使用pytorch搭建简单神经网络学习笔记
total_correct += (predicted == labels).sum().item() # 统计正确预测的数量。total_correct += (predicted == labels).sum().item() # 统计正确预测的数量。transforms.Normalize((0.5,), (0.5,)), # 对数据进行归一化处理。transforms.Normalize((0.5,), (0.5,)), # 对数据进行归一化处理。
2024-08-25 19:00:50 740
原创 seaborn的学习
product = hr.iloc[(hr['部门'].values=='产品开发部') & (hr['离职'].values==1), :]ax = sns.scatterplot(x='评分', y='每月平均工作小时数(小时)', data=product)sns.scatterplot(x='评分', y='每月平均工作小时数(小时)',hue='薪资',markers = {'低' : 'o', '中' : 'D', '高' : 's'}
2024-08-24 12:27:10 960 1
原创 人工智能的发展史(人工智能的”三起两落“)
该专家系统的研制成功不仅为人们提供了一个实用的专家系统,而且对知识表示、存储、获取、推理及利用等技术是一次非常有益的探索,为以后专家系统的建造树立了榜样,对人工智能的发展产生了深刻的影响,其意义远远超过了系统本身在实用上所创造的价值。从此,人工智能的第二个寒冬降临了。对知识的表示、利用及获取等的研究取得了较大的进展,特别是对不确定性知识的表示与推理取得了突破,建立了主观Bayes理论、确定性理论、证据理论等,对人工智能中模式识别、自然语言理解等领域的发展提供了支持,解决了许多理论及技术上的问题。
2024-08-23 20:50:20 2111
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人