今天学习的内容是经典排序问题中的归并排序。
归并排序是一种基于分治思想的高效排序算法,它的核心思想是将数组递归地拆分成更小的子数组,直到每个子数组只有一个元素,然后逐步合并这些子数组,最终得到一个完全有序的数组。
归并排序的时间复杂度为 O(n log n),适用于大规模数据排序,并且是一种稳定排序算法(即相等元素的相对顺序不会改变)。
归并排序的主要步骤分为两部分:
- 分解(Divide):将数组不断二分,直到每个子数组仅含一个元素。
- 合并(Merge):将两个已排序的子数组合并成一个有序数组,直到最终合并完成整个数组。
```python
def merge_sort(arr):
if len(arr) <= 1:
return arr
# 分解:将数组分成左右两部分
mid = len(arr) // 2
left = arr[:mid]
right = arr[mid:]
# 递归排序左右子数组
left = merge_sort(left)
right = merge_sort(right)
# 合并两个有序数组
return merge(left, right)
def merge(left, right):
result = []
i = j = 0
# 比较左右子数组的元素,按顺序合并
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
# 处理剩余元素
result.extend(left[i:])
result.extend(right[j:])
return result
# 测试
arr = [38, 27, 43, 3, 9, 82, 10]
sorted_arr = merge_sort(arr)
print("排序后:", sorted_arr)
- 归并排序是一种高效、稳定的排序算法,适用于大规模数据排序。
- 核心思想是分治+合并,时间复杂度稳定在 O(n log n)。
- 优化方式包括迭代实现、小数组优化等。
- 适用场景:数据库排序、大数据处理、链表排序等。