定义
对于向量组α1,α2,α3····,αs,如果存在一组不全为0的实数k1,k2····ks,使k1α1 + k2α2 + ······+ksαs = 0,则称向量组α1,α2,····,αs线性相关,否则称它线性无关。
人话
若满足k1α1 + k2α2 + ······+ksαs = 0,当求出来的k全部是0的时候,就是线性无关。若有一个k不是0,那就是线性相关。
例子
因为求出来的不全为0,而是1,-1,1,所以线性相关
例子
定义
对于向量组α1,α2,α3····,αs,如果存在一组不全为0的实数k1,k2····ks,使k1α1 + k2α2 + ······+ksαs = 0,则称向量组α1,α2,····,αs线性相关,否则称它线性无关。
人话
若满足k1α1 + k2α2 + ······+ksαs = 0,当求出来的k全部是0的时候,就是线性无关。若有一个k不是0,那就是线性相关。
例子
因为求出来的不全为0,而是1,-1,1,所以线性相关
例子