目录
一、Problem
题目大意:
输入n个数,以及q个区间,找到每个区间的中位数。
注:easy版本每一组测试样例的区间长度相同。(不是所有的查询区间长度相同!!想要靠样例长度骗分结果狠狠WA了一发。)
二、Solution
首先,暴力必超时(废话)
由于每一组测试样例的区间长度都相同,本题可以用一个长度为k的滑动窗口来维护查询每个区间的中位数。 (k=r-l+1)
先不断向窗口中按顺序插入数,利用二分函数lower_bound()找到该数的位置插入,可以保证该窗口的所有元素都是有序的。
当窗口大小等于区间长度时,由于窗口中的数有序,且区间长度为奇数,所以最中间的数为该段区间的中位数,同时该数也为以当前插入数的位置为右端点区间的中位数。
由此可以枚举出所有数组中所有长度等于k的区间的中位数,然后在根据右端点查询,代码时间复杂度大约为O(n*log n),在可接受范围内。
三、Code
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
#define int long long
const int N = 1e5 + 100;
int a[N], r[N], l[N],ans[N];
vector<int> ck;
signed main() {
int n, q;
cin >> n >> q;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= q; i++) cin >> l[i] >> r[i];
int k = r[1] - l[1] + 1;
for(int i = 1; i <= n; i++) {
ck.insert(lower_bound(ck.begin(), ck.end(), a[i]), a[i]);
if(ck.size() >= k) {
ans[i]=ck[k >> 1];
ck.erase(lower_bound(ck.begin(), ck.end(), a[i-k+1]));
}
}
for (int i = 1; i <=q; i++) {
cout << ans[r[i]] << endl;
}
return 0;
}