前言
PyTorch作为当前最流行的深度学习框架之一,其安装配置过程对于初学者来说往往是一个不小的挑战。本文将从零开始,详细介绍如何在Windows系统上配置PyTorch环境,包括Conda环境管理、CUDA配置以及PyTorch安装等关键步骤。通过本文,您将能够:
- 掌握Conda环境的基本使用方法
- 了解如何正确配置CUDA环境
- 学会安装和验证PyTorch
- 掌握常见问题的解决方案
文章目录
一、创建并激活Conda环境
创建命令如下
conda create -n deeplearning python=3.10 -y
效果示例如下
(base) PS C:\Users\albus> conda create -n deeplearning python=3.10 -y
Retrieving notices: done
Channels:
- defaults
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
environment location: D:\anaconda3\envs\deeplearning
added / updated specs:
- python=3.10
The following NEW packages will be INSTALLED:
bzip2 pkgs/main/win-64::bzip2-1.0.8-h2bbff1b_6
ca-certificates pkgs/main/win-64::ca-certificates-2025.2.25-haa95532_0
libffi pkgs/main/win-64::libffi-3.4.4-hd77b12b_1
openssl pkgs/main/win-64::openssl-3.0.16-h3f729d1_0
pip pkgs/main/win-64::pip-25.0-py310haa95532_0
python pkgs/main/win-64::python-3.10.16-h4607a30_1
setuptools pkgs/main/win-64::setuptools-75.8.0-py310haa95532_0
sqlite pkgs/main/win-64::sqlite-3.45.3-h2bbff1b_0
tk pkgs/main/win-64::tk-8.6.14-h0416ee5_0
tzdata pkgs/main/noarch::tzdata-2025a-h04d1e81_0
vc pkgs/main/win-64::vc-14.42-haa95532_4
vs2015_runtime pkgs/main/win-64::vs2015_runtime-14.42.34433-he0abc0d_4
wheel pkgs/main/win-64::wheel-0.45.1-py310haa95532_0
xz pkgs/main/win-64::xz-5.6.4-h4754444_1
zlib pkgs/main/win-64::zlib-1.2.13-h8cc25b3_1
Downloading and Extracting Packages:
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate deeplearning
#
# To deactivate an active environment, use
#
# $ conda deactivate
激活环境命令如下
conda activate deeplearning
效果示例如下
(base) PS C:\Users\albus> conda activate deeplearning
(deeplearning) PS C:\Users\albus>
二、更新显卡驱动
在开始配置PyTorch之前,确保您的显卡驱动是最新的非常重要。这不仅能够提供更好的性能,还能避免潜在的兼容性问题。
- 优先使用官方GeForce Experience工具自动更新(避免第三方驱动兼容问题)
图1:打开GeForce Experience应用程序,这是NVIDIA官方提供的显卡驱动管理工具
图2:在GeForce Experience中点击"检查更新"按钮,系统会自动检测并安装最新的显卡驱动
三、验证CUDA最高支持版本
打开终端,输入下面命令
nvidia-smi
效果示意如下
(deeplearning) PS C:\Users\albus> nvidia-smi
Tue Apr 15 14:19:54 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 572.83 Driver Version: 572.83 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 4060 ... WDDM | 00000000:01:00.0 Off | N/A |
| N/A 49C P8 2W / 120W | 0MiB / 8188MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+
- 输出解读: 关注
CUDA Version: 12.8
,表示当前驱动支持的最高CUDA版本(向下兼容)
四、下载CUDA Toolkit
选择合适的CUDA版本对于PyTorch的稳定运行至关重要。以下是版本选择的关键策略:
- 推荐比最高版本低1-2个小版本(如驱动支持12.8,安装12.6,更加稳定)
- 访问CUDA Toolkit Archive下载对应版本
图3:在CUDA Toolkit Archive页面选择适合的版本,建议选择比显卡驱动支持的最高版本低1-2个小版本
五、安装CUDA Toolkit
安装CUDA Toolkit是配置PyTorch环境的重要步骤。以下是详细的安装过程:
下载完成后打开文件地址双击进行安装,选择的为临时安装路径,安装完成会自动删除
图5:CUDA安装程序启动界面,这里会显示安装进度和临时文件解压过程
等待加载完成后,弹出配置窗口,前两项默认,第三项选择自定义安装,手动配置安装位置
图6:在安装选项中,建议选择"自定义安装"以便更好地控制安装过程
六、验证CUDA Toolkit是否安装成功
安装完成后,需要验证CUDA是否正确安装。重启终端后,运行以下命令:
nvcc -V
效果示例如下(默认情况会自动配置环境变量,如果nvcc命令找不到,请检查环境变量)
(base) PS C:\Users\albus> nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Fri_Jun_14_16:44:19_Pacific_Daylight_Time_2024
Cuda compilation tools, release 12.6, V12.6.20
Build cuda_12.6.r12.6/compiler.34431801_0
七、下载安装对应版本的Pytorch
PyTorch的安装需要特别注意版本匹配问题。以下是详细的安装步骤:
- 访问Start Locally | PyTorch 官方网站
- 按照自己的配置选择,得到运行命令
我们这里选择 Stable
稳定版本,另外注意选择对应的CUDA版本,CPU为无GPU版本
得到示例命令如下
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
图7:在PyTorch官网选择适合的安装配置,包括PyTorch版本、CUDA版本等
回到终端,在指定的conda环境中运行得到的命令,然后就可以等待自动下载安装完成。
图8:PyTorch安装过程,显示下载和安装进度
倘若下载torch时超时,可尝试以下解决方案:
-
使用国内镜像源:
- 清华源:https://pypi.tuna.tsinghua.edu.cn/simple
- 阿里源:https://mirrors.aliyun.com/pypi/simple
-
本地离线下载:
- 推荐工具 莫特里克斯
- 选择对应配置架构下载即可
图9:使用下载工具获取PyTorch安装包
然后复制终端日志pytorch的下载链接(上图中2.5g那个),打开 Motrix,点击左侧边栏加号创建任务,即可自动粘贴
图10:在下载工具中创建新的下载任务
下载完成后复制文件的路径
图11:复制下载文件的完整路径,用于后续安装
获得文件路径"D:\Downloads\torch-2.6.0+cu126-cp310-cp310-win_amd64.whl" (示例)
运行如下代码,等待安装完毕即可
pip install "D:\Downloads\torch-2.6.0+cu126-cp310-cp310-win_amd64.whl"
八、验证Pytorch是否成功
安装完成后,需要验证PyTorch是否正确安装并能够使用GPU。在Python环境中运行以下命令:
(deeplearning) PS C:\Users\albus> python
Python 3.10.16 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:19:12) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.6.0+cu126
>>> print(torch.cuda.is_available()) # 验证CUDA是否可用
True
>>> print(torch.cuda.get_device_name(0)) # 显示GPU设备名称
NVIDIA GeForce RTX 4060
如果以上命令都能正常执行,说明PyTorch已经成功安装并可以使用GPU加速。现在您可以开始使用PyTorch进行深度学习开发了!