《从零开始配置PyTorch:保姆级教程(2025最新)》

前言

PyTorch作为当前最流行的深度学习框架之一,其安装配置过程对于初学者来说往往是一个不小的挑战。本文将从零开始,详细介绍如何在Windows系统上配置PyTorch环境,包括Conda环境管理、CUDA配置以及PyTorch安装等关键步骤。通过本文,您将能够:

  • 掌握Conda环境的基本使用方法
  • 了解如何正确配置CUDA环境
  • 学会安装和验证PyTorch
  • 掌握常见问题的解决方案

一、创建并激活Conda环境

创建命令如下

conda create -n deeplearning python=3.10 -y

效果示例如下

(base) PS C:\Users\albus> conda create -n deeplearning python=3.10 -y
Retrieving notices: done
Channels:
 - defaults
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: D:\anaconda3\envs\deeplearning

  added / updated specs:
    - python=3.10


The following NEW packages will be INSTALLED:

  bzip2              pkgs/main/win-64::bzip2-1.0.8-h2bbff1b_6
  ca-certificates    pkgs/main/win-64::ca-certificates-2025.2.25-haa95532_0
  libffi             pkgs/main/win-64::libffi-3.4.4-hd77b12b_1
  openssl            pkgs/main/win-64::openssl-3.0.16-h3f729d1_0
  pip                pkgs/main/win-64::pip-25.0-py310haa95532_0
  python             pkgs/main/win-64::python-3.10.16-h4607a30_1
  setuptools         pkgs/main/win-64::setuptools-75.8.0-py310haa95532_0
  sqlite             pkgs/main/win-64::sqlite-3.45.3-h2bbff1b_0
  tk                 pkgs/main/win-64::tk-8.6.14-h0416ee5_0
  tzdata             pkgs/main/noarch::tzdata-2025a-h04d1e81_0
  vc                 pkgs/main/win-64::vc-14.42-haa95532_4
  vs2015_runtime     pkgs/main/win-64::vs2015_runtime-14.42.34433-he0abc0d_4
  wheel              pkgs/main/win-64::wheel-0.45.1-py310haa95532_0
  xz                 pkgs/main/win-64::xz-5.6.4-h4754444_1
  zlib               pkgs/main/win-64::zlib-1.2.13-h8cc25b3_1



Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate deeplearning
#
# To deactivate an active environment, use
#
#     $ conda deactivate

激活环境命令如下

conda activate deeplearning

效果示例如下

(base) PS C:\Users\albus> conda activate deeplearning
(deeplearning) PS C:\Users\albus>

二、更新显卡驱动

在开始配置PyTorch之前,确保您的显卡驱动是最新的非常重要。这不仅能够提供更好的性能,还能避免潜在的兼容性问题。

  • 优先使用官方GeForce Experience工具自动更新(避免第三方驱动兼容问题)

图1:打开GeForce Experience
图1:打开GeForce Experience应用程序,这是NVIDIA官方提供的显卡驱动管理工具

图2:检查更新
图2:在GeForce Experience中点击"检查更新"按钮,系统会自动检测并安装最新的显卡驱动

三、验证CUDA最高支持版本

打开终端,输入下面命令

nvidia-smi

效果示意如下

(deeplearning) PS C:\Users\albus> nvidia-smi
Tue Apr 15 14:19:54 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 572.83                 Driver Version: 572.83         CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4060 ...  WDDM  |   00000000:01:00.0 Off |                  N/A |
| N/A   49C    P8              2W /  120W |       0MiB /   8188MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+
  • 输出解读: 关注CUDA Version: 12.8,表示当前驱动支持的最高CUDA版本(向下兼容)

四、下载CUDA Toolkit

选择合适的CUDA版本对于PyTorch的稳定运行至关重要。以下是版本选择的关键策略:

  • 推荐比最高版本低1-2个小版本(如驱动支持12.8,安装12.6,更加稳定)
  • 访问CUDA Toolkit Archive下载对应版本

图3:CUDA Toolkit下载页面
图3:在CUDA Toolkit Archive页面选择适合的版本,建议选择比显卡驱动支持的最高版本低1-2个小版本

五、安装CUDA Toolkit

安装CUDA Toolkit是配置PyTorch环境的重要步骤。以下是详细的安装过程:

下载完成后打开文件地址双击进行安装,选择的为临时安装路径,安装完成会自动删除

图5:CUDA安装界面
图5:CUDA安装程序启动界面,这里会显示安装进度和临时文件解压过程

等待加载完成后,弹出配置窗口,前两项默认,第三项选择自定义安装,手动配置安装位置

图6:CUDA安装选项
图6:在安装选项中,建议选择"自定义安装"以便更好地控制安装过程

六、验证CUDA Toolkit是否安装成功

安装完成后,需要验证CUDA是否正确安装。重启终端后,运行以下命令:

nvcc -V

效果示例如下(默认情况会自动配置环境变量,如果nvcc命令找不到,请检查环境变量)

(base) PS C:\Users\albus> nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Fri_Jun_14_16:44:19_Pacific_Daylight_Time_2024
Cuda compilation tools, release 12.6, V12.6.20
Build cuda_12.6.r12.6/compiler.34431801_0

七、下载安装对应版本的Pytorch

PyTorch的安装需要特别注意版本匹配问题。以下是详细的安装步骤:

我们这里选择 Stable 稳定版本,另外注意选择对应的CUDA版本,CPU为无GPU版本

得到示例命令如下

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

图7:PyTorch安装配置页面
图7:在PyTorch官网选择适合的安装配置,包括PyTorch版本、CUDA版本等

回到终端,在指定的conda环境中运行得到的命令,然后就可以等待自动下载安装完成。

图8:PyTorch安装过程
图8:PyTorch安装过程,显示下载和安装进度

倘若下载torch时超时,可尝试以下解决方案:

  1. 使用国内镜像源:

    • 清华源:https://pypi.tuna.tsinghua.edu.cn/simple
    • 阿里源:https://mirrors.aliyun.com/pypi/simple
  2. 本地离线下载:

图9:下载工具界面
图9:使用下载工具获取PyTorch安装包

然后复制终端日志pytorch的下载链接(上图中2.5g那个),打开 Motrix,点击左侧边栏加号创建任务,即可自动粘贴

图10:创建下载任务
图10:在下载工具中创建新的下载任务

下载完成后复制文件的路径

图11:获取文件路径
图11:复制下载文件的完整路径,用于后续安装

获得文件路径"D:\Downloads\torch-2.6.0+cu126-cp310-cp310-win_amd64.whl" (示例)

运行如下代码,等待安装完毕即可

pip install "D:\Downloads\torch-2.6.0+cu126-cp310-cp310-win_amd64.whl"

八、验证Pytorch是否成功

安装完成后,需要验证PyTorch是否正确安装并能够使用GPU。在Python环境中运行以下命令:

(deeplearning) PS C:\Users\albus> python
Python 3.10.16 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:19:12) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> import torch
>>> print(torch.__version__)
2.6.0+cu126
>>> print(torch.cuda.is_available())  # 验证CUDA是否可用
True
>>> print(torch.cuda.get_device_name(0))  # 显示GPU设备名称
NVIDIA GeForce RTX 4060

如果以上命令都能正常执行,说明PyTorch已经成功安装并可以使用GPU加速。现在您可以开始使用PyTorch进行深度学习开发了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albus#0_0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值