- 博客(16)
- 收藏
- 关注
原创 B/S 架构和 C/S 架构
摘要:B/S(浏览器/服务器)和C/S(客户端/服务器)是两种主流软件架构模式,主要差异在于交互入口、部署方式和资源依赖。C/S需安装专用客户端,性能优但维护成本高;B/S通过浏览器访问,跨平台性好但依赖网络。C/S适用于高性能要求的场景如游戏、设计软件,B/S更适合电商、OA等轻量应用。当前B/S因灵活性成为互联网主流,而C/S在金融等专业领域仍不可替代,两者常结合使用以满足多样化需求。(149字)
2025-12-29 16:30:52
195
原创 同步异步阻塞非阻塞并发并行
本文阐述了同步/异步、阻塞/非阻塞、并发/并行的核心区别。同步/异步关注调用方是否等待结果,阻塞/非阻塞关注等待时能否做其他事。并发是任务交替执行,并行是真正同时执行。同步阻塞效率最低,异步非阻塞最适合高性能场景,能充分利用并发/并行优势。不同组合模式对多任务处理效率有重要影响,异步非阻塞是并发/并行架构的最优选择。
2025-12-29 16:12:44
279
原创 Python用原始SQL语句操作mysql数据库
本文介绍了MySQL数据库操作和Python封装方法。首先展示了创建数据库和users表的SQL语句,包含主键、字符集等优化设置。然后通过Python的Database类完整封装了数据库连接、增删改查等操作,使用pymysql库实现,并加入错误处理、事务回滚和连接管理机制。示例演示了添加用户、查询、更新和删除等操作流程,最后强调这种面向对象封装方式提高了代码复用性、可维护性和安全性。整个方案适用于中小型项目的数据库操作需求。
2025-11-13 14:42:28
149
原创 SQLAlchemy连接mysql数据库并进行CRUD 流程
本文介绍了使用SQLAlchemy操作MySQL数据库的完整流程。首先安装必要的Python库(pymysql和sqlalchemy),然后创建数据库连接配置。通过定义User模型类映射数据库表,使用create_all()方法创建表结构。演示了完整的CRUD操作:创建新用户、查询所有用户/条件查询、更新用户信息和删除用户记录。最后展示了如何执行原始SQL查询。代码包含异常处理和事务管理(commit/rollback),适合作为Python操作MySQL的ORM入门参考。
2025-11-13 14:26:23
399
原创 Qt中下拉框(QComboBox)的变化信号种类
QComboBox主要信号对比:activated(仅用户交互触发)、currentIndexChanged(任何索引改变)、currentTextChanged(文本变化)、editTextChanged(可编辑时文本输入)和highlighted(悬停高亮)。关键区别在于触发源(用户/代码)和关注点(索引/文本)。使用时根据实际需求选择:如需要用户确认操作用activated,通用索引变化用currentIndexChanged,实时文本输入用editTextChanged等。信号参数需注意索引还是文本
2025-09-28 11:54:07
698
原创 wsl报错是虚拟化平台选项没看到怎么解决
【WSL启动失败解决方案】遇到WSL启动错误"Wsl/Service/CreateInstance/CreateVm/HCS/HCS_E_SERVICE_NOT_AVAILABLE"时,需按以下步骤操作:以管理员身份打开PowerShell,执行命令: dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart 完成后重启电脑。重启后即可通过PowerShell输入wsl正常启动
2025-09-28 11:37:47
428
原创 基于Python tk的学生信息管理
本文介绍了一个基于Python Tkinter的学生信息管理系统,该系统采用模块化设计,主要功能包括: 系统架构: 使用JSON文件(students.json)存储学生数据 采用MVC模式,分为数据层(data_handler)、视图层(views)和控制层(main) 核心功能模块: 登录验证(默认账号admin/123456) 学生信息增删改查 成绩录入与修改 数据持久化存储
2025-08-25 10:26:06
564
原创 登临GPU预测推理过程
摘要:登临GPU推理流程包含6个关键阶段:1)引擎初始化(加载ONNX模型并构建优化引擎);2)输入输出绑定(分配GPU内存缓冲区);3)GPU预热(5次迭代确保性能稳定);4)核心推理流程(图像预处理→GPU推理→后处理);5)结果可视化(绘制检测框并保存);6)性能统计(计算平均推理时间、FPS等指标)。该流程通过dlnne引擎实现模型优化,结合CUDA内存操作完成高效数据传输,最终输出检测结果和性能报告,充分发挥登临GPU硬件优势。预处理和后处理环节实现CPU-GPU协同,形成完整的端到端推理方案。
2025-08-25 10:25:38
461
1
原创 Python 中,列表(list)、字典(dict)、元组(tuple)和集合(set)是四种常用的内置数据结构
Python提供了四种常用数据结构:列表(有序可变)、元组(有序不可变)、字典(键值映射)和集合(无序唯一)。列表适用于需要频繁修改的顺序数据,元组适合存储固定数据,字典通过键高效查找值,集合用于去重和集合运算。每种结构各有特点:列表可增删改查,元组更轻量高效,字典支持快速检索,集合自动去重。掌握它们的特性和使用方法,能有效解决不同场景下的数据存储和处理需求。
2025-08-05 10:36:11
559
原创 适配登临科技GPU的python脚本实例
基于登临GPU的YOLOv8目标检测实现方案 本文详细介绍了使用登临科技GPU实现YOLOv8目标检测的完整流程。核心内容包括:1) 通过dlnne库初始化GPU推理引擎,配置权重共享模式;2) 图像预处理保持宽高比,归一化并调整维度;3) 利用pycuda进行GPU内存管理,实现高效数据传输;4) 后处理流程包含置信度过滤、NMS非极大值抑制;5) 输出结果可视化,支持COCO数据集80类物体识别。系统性能测试显示,该方案可实现高效的目标检测,平均推理时间在毫秒级,具备实际应用价值。
2025-08-05 10:16:28
619
原创 C++中.和->操作符的区别
C++中点运算符(.)和箭头运算符(->)的区别:点运算符用于直接访问对象实例的成员,而箭头运算符用于通过指针间接访问对象成员。.用于非指针对象(如Person p1),->用于指针对象(如Person* p2)。两者功能相同但适用场景不同,ptr->member等价于(*ptr).member。智能指针同样使用->操作符。
2025-07-29 14:32:08
327
原创 在GPU上使用ONNX Runtime运行YOLOv8推理的Python实例
摘要:本文介绍了在NVIDIA RTX 3060 GPU环境下使用ONNX Runtime进行YOLOv8目标检测的完整流程。内容包括模型获取(官方下载或自行转换)、环境配置(CUDA 11.8、cuDNN 8.6)、图像预处理、GPU加速推理实现以及后处理步骤。重点展示了如何配置ONNX Runtime的CUDA执行提供器,包括显存限制、卷积算法优化等关键参数设置。实验使用640x640输入分辨率,完成了从图像加载、推理到结果可视化的全流程,并输出了包含检测框和置信度的可视化结果,平均推理时间在数十毫秒级
2025-07-29 14:07:12
742
原创 登临科技AI加速卡Hamming V2驱动与SDK安装后的模块测试(python)
登临科技AI加速卡Hamming V2驱动与SDK安装后的模块测试(python)以及拓展测试图片集及其GPU处理图片测速
2025-07-22 15:40:11
2585
1
原创 基于 MPI 的任务调度系统
摘要:本文介绍了一个基于MPI的主从式并行任务调度系统实现。系统包含一个master进程和多个worker进程,采用动态任务分配策略处理计算密集型任务。master负责生成100个任务并分发给空闲worker,worker执行计算(sin/cos迭代运算)后返回结果。系统设计了Task/Result数据结构,使用不同MPI标签区分任务、结果和终止信号消息,具有任务状态跟踪和完整性检查功能。该框架可作为并行计算基础,通过调整任务结构和分配策略优化性能。编译运行需MPI环境支持,测试命令为mpirun -np
2025-07-11 14:25:57
589
2
原创 Socket通信使用Linux虚拟机和本身或Windows进行通信使用telnet互通不了怎么解决
4.可能是Linux防火墙未关闭,这边建议暂时关闭防火墙(Linux命令行写下面图片第一行即可),每次连接需要重新关闭,也可以永久关闭防火墙。2.检查目标服务,本文目标IP以192.168.88.129为例,端口号以666端口为例。安全性:关闭防火墙会使系统暴露在网络攻击中,建议仅在测试环境或内网中使用。以下为与Linux本身进行连接,接着与Windows连接的第一步。(也可以使用Linux虚拟机自己连接自己,使用telnet)3.若Linux系统未安装Linux,在Linux系统安装。
2025-04-23 00:20:10
324
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅