试题 历届真题 路径之谜【第七届】【决赛】【C组】
资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
小明冒充X星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。
假设城堡地面是 n x n 个方格。如下图所示:
按习俗,骑士要从西北角走到东南角。
可以横向或纵向移动,但不能斜着走,也不能跳跃。
每走到一个新方格,就要向正北方和正西方各射一箭。
(城堡的西墙和北墙内各有 n 个靶子)
同一个方格只允许经过一次。但不必做完所有的方格。
如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?
有时是可以的,比如图1.png中的例子。
本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入格式
第一行一个整数N(0<N<20),表示地面有 N x N 个方格
第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出格式
一行若干个整数,表示骑士路径。
为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3....
比如,图1.png中的方块编号为:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
示例:
用户输入:
4
2 4 3 4
4 3 3 3
程序应该输出:
0 4 5 1 2 3 7 11 10 9 13 14 15
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
解题思路:
经典的dfs题目,重点在于找到终止递归的条件check函数和判断是否进行下一曾dfs搜索的judge函数。而在本解法中剪枝直接在check函数中完成,并使用sys.exit()语句在找到答案时输出答案并立刻跳出,以减少回溯的时间。
import sys
sys.setrecursionlimit(1000000)
n = int(input())
ver = list(map(int, input().split()))
ver[0] -= 1
# 每一列
lin = list(map(int, input().split()))
lin[0] -= 1
# 每一行
maze = [[0 for _ in range(n)] for _ in range(n)]
dirs = [lambda x, y: (x+1, y),
lambda x, y: (x, y+1),
lambda x, y: (x-1, y),
lambda x, y: (x, y-1)
]
stack = [(0,0)]
ans = ['0']
maze[0][0] = 1
def check(x, y):
if x == n - 1 and y == n - 1:
if sum(lin) == 0 and sum(ver) == 0:
for i in stack[1:]:
a = i[0] * n + i[1]
ans.append(str(a))
print(' '.join(ans))
sys.exit()
return True
else:
return True
else:
return False
def judge(x, y):
if x > n-1 or y > n-1 or x < 0 or y < 0:
return False
elif lin[x] <= 0 or ver[y] <= 0:
return False
elif maze[x][y] == 1:
return False
else:
return True
def dfs(x, y):
if check(x, y):
return
else:
for dir in dirs:
a,b = dir(x, y)
if judge(a, b):
stack.append((a, b))
maze[a][b] = 1
lin[a] -= 1
ver[b] -= 1
dfs(a, b)
stack.pop()
maze[a][b] = 0
lin[a] += 1
ver[b] += 1
dfs(0,0)