线代常见题型总结


一、行列式的计算

上三角行列式和下三角行列式的结果都为主对角线元素之积

1.三阶行列式

化为上三角行行列式计算
在这里插入图片描述

2.含未知数行列式

先将所有的列都加到第一列后提公因子,再化上三角
在这里插入图片描述

3.范德蒙行列式

特点:后减前 如: ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 3 − x 2 ) (x_{2}-x_{1})(x_{3}-x_{1})(x_{3}-x_{2}) (x2x1)(x3x1)(x3x2)
在这里插入图片描述
变形:
在这里插入图片描述

4.爪型行列式

计算方法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
变形:
在这里插入图片描述

5.余子式(M)和代数余子式(A)

概念:
在这里插入图片描述

  1. 行列式展开定理(某一行/列0较多情况下可用):
    在这里插入图片描述
    例题:
    在这里插入图片描述
  2. 替换法:
    在这里插入图片描述
    变形:
    在这里插入图片描述
    将其转换为余子式A,然后再通过替换法计算

6.拆合法

在这里插入图片描述

7.拉普拉斯公式

在这里插入图片描述
例题:
在这里插入图片描述

二、矩阵

1.矩阵的乘法

在这里插入图片描述

2.抽象矩阵求逆矩阵

例题:
在这里插入图片描述
在这里插入图片描述

3.数字型矩阵求逆

例题:

  1. 三阶行列式
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述
  2. 二阶行列式
    用【定理】或者【行变换】即可
    定理:若 ∣ A ∣ ≠ 0 ,则 A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ 定理:若|A|≠0,则A可逆,且{\displaystyle A^{-1}={\frac {1}{|A|}}A^{*}} 定理:若A=0,则A可逆,且A1=A1A

例题:
在这里插入图片描述

4.求解矩阵方程

特点:
伴随矩阵的性质:
A A ∗ = A ∗ A = ∣ A ∣ E A ∗ = ∣ A ∣ A − 1 AA^{*} = A^{*}A = |A|E\\ A* = |A|A^{-1} AA=AA=AEA=AA1

注意矩阵乘法的顺序

在这里插入图片描述
例题:

  1. 数字型
    在这里插入图片描述
    在这里插入图片描述
  2. 含伴随:
    在这里插入图片描述

5.方阵的行列式

公式:
在这里插入图片描述
例题:
在这里插入图片描述

6.矩阵的秩

化为行阶梯形即可得出R(无须化到最简)
在这里插入图片描述

三、向量组的线性相关性

1.判断向量组的线性相关性(数字型)

知识点:
在这里插入图片描述
例题:

  1. 例1
    在这里插入图片描述
    在这里插入图片描述
  2. 例2
    在这里插入图片描述

2.判断向量组的线性相关性(抽象型)

知识点:

  1. 用定义:若存在系数,使向量组的和为0,则线性相关,反之无关
  2. 用下面方法
    在这里插入图片描述

例题:
在这里插入图片描述
在这里插入图片描述

3.求向量组的秩与极大无关组

知识点:

在这里插入图片描述

例题:
在这里插入图片描述
在这里插入图片描述

四、线性方程组

1.齐次方程组(A·X=0)的求解

知识点:
在这里插入图片描述

例题:
在这里插入图片描述
在这里插入图片描述

2.非齐次方程组的求解

知识点:

在这里插入图片描述
例题:
在这里插入图片描述在这里插入图片描述

3.带参数方程组的求解

例题:
在这里插入图片描述
在这里插入图片描述

五、矩阵的特征值与特征向量

1.特征值与特征向量的求法(数字型)

知识点:

在这里插入图片描述

例题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.特征值与特征向量的求法(抽象型)

知识点:
在这里插入图片描述

例题:
在这里插入图片描述
在这里插入图片描述

3.矩阵的相似对角化

知识点:

  1. 不对称阵求可逆阵
    在这里插入图片描述
  2. 对称阵求正交阵
    在这里插入图片描述

例题:

  1. 不对称阵
    在这里插入图片描述
    在这里插入图片描述

  2. 对称阵
    在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值