寒假每日一题
二分
1.技能升级
#include<iostream>
#include<algorithm>
#include<cmath>
#define int long long
using namespace std;
int n,m;
int res=0;
int ans;
int result;
pair<int,int> a[100020];
int check(int mid){
int cnt=0;
for(int i=0;i<n;i++){
if(a[i].first>mid){
cnt+=ceil((double)(a[i].first-mid)/(a[i].second));
}
}
return cnt<=m;
}
int sum(int a,int c,int b){
int m=a-b*(c-1);
return (m+a)*c>>1;
}
signed main(){
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>a[i].first>>a[i].second;
}
int l=0,r=1e6+10;
while(l<r){
int mid=l+r>>1;
if(check(mid)){
r=mid;
}
else{
l=mid+1;
}
}
result=m;
for(int i=0;i<n;i++){
//先求次数在求和
if(a[i].first>l){
ans=ceil((double)(a[i].first-l)/(a[i].second));
result-=ans;
res+=sum(a[i].first,ans,a[i].second);
}
}
cout<<res+result*l;
return 0;
}
对于浮点数,向上取整ceil,向下取整floor,四舍五入round
二分模板一共有两个,分别适用于不同情况。
算法思路:假设目标值在闭区间[l, r]中, 每次将区间长度缩小一半,当l = r时,我们就找到了目标值。
yxc版本1
当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1;,计算mid时不需要加1。
C++ 代码模板:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
yxc版本2
当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。
C++ 代码模板:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}