一、300最长递增子序列
1.解题思路
如何判断递增?
动规五部曲
1.dp数组及其含义:dp[i]表示从0~nums[i]的最长递增子序列的长度。
2.递推公式:j从0开始遍历到i-1,如果dp[j]<dp[i],那么dp[i] = max(dp[i], dp[j] + 1)
3.初始化:每个元素以自己为结尾的最长子序列都可以初始化为1,后面的都会被覆盖,也初始化为1即可。
4.遍历顺序:从前往后
5.打印dp数组。
2.代码
时间复杂度:O(n^2)
空间复杂度:O(n)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int result = 1; //取最终结果
for(int i = 1; i < nums.size(); i++) {
for(int j = 0; j < i; j++) {
if(nums[i] > nums[j]) {
dp[i] = max(dp[i], dp[j] + 1);
}
}
if(dp[i] > result) result = dp[i];
}
return result;
}
};
二、674最长连续递增序列
1.解题思路
在上一题的基础上还加了连续的要求,我认为dp数组的含义是不需要变化的,只需要修改一下dp数组的递推公式,如果不连续,dp从0开始计数即可。
递推公式:只需要看本元素和其上一个元素即可

2.代码
时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int result = 1; // 收集最终结果
for(int i = 1; i < nums.size(); i++) {
if(nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
if(dp[i] > result) result = dp[i];
cout << dp[i] << ' ';
}
return result;
}
};
三、718最长重复子数组
1.解题思路
两个数组的元素位置等都不相同,怎么能找到公共的最长子数组呢?
这里定义的最长子数组,其实是连续子序列。
定义一个二维数组dp[i][j]就可以了,表示第一个数组从0到i - 1和第二个数组从0到j - 1的最长重复数组元素个数。
比较两个数组元素之间的关系用二维dp数组即可
动规五部曲
1.dp数组及其含义:二维数组dp[i][j]就可以了,表示第一个数组从0到i - 1和第二个数组从0到j - 1的最长重复数组元素个数。注意这里的下标表示的是该元素是重复子数组的最后一个元素。
所以最终结果不一定是dp数组的最后一个元素,而是dp数组中最大的值。
2.递推公式:如果第一个数组的nums[i - 1] == 第二个数组的nums[j - 1], 那么dp[i][j] = dp[i - 1][j - 1] + 1,两个数组的元素同时回退一下,如果两个数组中对应的元素不相等,那么就不用进行操作,因为dp[i][j]表示的是以i - 1和j - 1结尾的两个数组的最长重复子数组。
3.初始化:dp[0][j]和dp[i][0]都没有实际的意义,其中一维都表示某个数组下标为-1,初始化为0即可,这样不妨碍后续的状态转移方程。同时这也是将dp[i][j]定义为以i - 1和j - 1结尾的好处所在。
4.遍历顺序:两层for分别遍历两个数组,先谁后谁都可以。但是注意遍历的时候要从1开始遍历,否则dp数组的表示就从下标为-1开始了,没有任何意义。
5.打印dp数组
2.代码
时间复杂度:O(n*m)
空间复杂度:O(n*m)
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
// 因为dp表示的是下标为i-1和j-1,所以dp数组要多定义一位
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for(int i = 1; i <= nums1.size(); i++) {
for(int j = 1; j <= nums2.size(); j++) {
if(nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if(result < dp[i][j]) result = dp[i][j];
}
}
// for(int i = 0; i <= nums1.size(); i++) {
// for(int j = 0; j <= nums2.size(); j++) {
// cout << dp[i][j] << ' ';
// }
// cout << endl;
// }
return result;
}
};