- 博客(3)
- 收藏
- 关注
原创 【吴恩达 机器学习 学习笔记】多元线性回归模型:矢量化及特征缩放
在前面的学习中,我们掌握了根据房屋的面积预测房屋价格的方法(单变量线性回归模型),如果我们的房屋特征增加(如增加了房间的个数、房屋的年龄等),在多元变量中,我们该如何进行回归分析呢?
2024-07-19 22:09:50 761
原创 【吴恩达 机器学习 学习笔记】线性回归模型及梯度下降的原理
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)选择初始值来选择表面的起始点,然后我们沿着这个点的梯度方向迈出一步,不断循环这个步骤,直到我们处在这个山谷的最底部,那么,我们就得到了一个局部最小值(如图),学习率通常是0到1之间的一个正小数,它来控制这个算法下坡的步幅,这个数字越大,下坡的速度越快。,在机器学习中,模型的参数是你可以在训练期间调整以改进模型的变量,也叫系数或者权重。
2024-07-14 16:34:41 824
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人