二进制枚举

本文探讨了二进制枚举在解决数组子集问题中的应用,通过位运算判断元素是否在子集中,并以三个题目为例,详细阐述了如何利用这种技巧找到所有子集并进行特定计算,如求和、最大攻击力等。
摘要由CSDN通过智能技术生成

什么是二进制枚举子集呢?

对于有n个数,我们用n位二进制数来表示每个数的状态,1代表选,0代表不选。对此一共有2^n种情况,而2^n == 1 << n,这2^n种情况对应由这n个数组成的集合的子集数量

假设有5个数:那么5位二进制数为xxxxx。

假设:11001,这就表示由第1、第4、第5个数组成的一个子集。

那么同样:对于一个长度为n的nums[n]数组,要求它的所有子集,就可以由二进制:xxxx....xx来表示

那么我们如何判定nums中的某一个数是否在其中的一个子集中呢?

假设当前子集为:0101001 = 41

可知,第4个数在当前子集中,那么我们如何判断第4个数在该子集中呢?

对于位运算:1 << 3 == 0001000,此时(0101001) & (0001000)≠ 0 ,此时即代表第4个数在当前子集中。

则:若当前子集的二进制表示转换为十进制 i,判断第j个数是否在当前子集中,就 i & (1<<(j-1)),若结果不为0,则说明第j个数在i子集中

1、题1:得到整数x

该题我们就可以用二进制枚举出数组nums的所有子集,然后用按位与运算来确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YangZ123123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值