什么是二进制枚举子集呢?
对于有n个数,我们用n位二进制数来表示每个数的状态,1代表选,0代表不选。对此一共有2^n种情况,而2^n == 1 << n,这2^n种情况对应由这n个数组成的集合的子集数量。
假设有5个数:那么5位二进制数为xxxxx。
假设:11001,这就表示由第1、第4、第5个数组成的一个子集。
那么同样:对于一个长度为n的nums[n]数组,要求它的所有子集,就可以由二进制:xxxx....xx来表示。
那么我们如何判定nums中的某一个数是否在其中的一个子集中呢?
假设当前子集为:0101001 = 41
可知,第4个数在当前子集中,那么我们如何判断第4个数在该子集中呢?
对于位运算:1 << 3 == 0001000,此时(0101001) & (0001000)≠ 0 ,此时即代表第4个数在当前子集中。
则:若当前子集的二进制表示转换为十进制 i,判断第j个数是否在当前子集中,就 i & (1<<(j-1)),若结果不为0,则说明第j个数在i子集中。
1、题1:得到整数x
该题我们就可以用二进制枚举出数组nums的所有子集,然后用按位与运算来确