穷举vs暴搜vs深搜vs回溯vs剪枝

本文深入探讨穷举算法在全排列和子集问题中的应用,通过递归和二进制枚举实现解题。全排列通过决策树分析,利用递归与回溯进行深度搜索,同时介绍了剪枝技巧避免重复。子集问题提供了两种解法,包括二进制枚举子集和递归解法,详细解析了决策树、代码设计及回溯过程。
摘要由CSDN通过智能技术生成

1、全排列

46. 全排列 - 力扣(LeetCode)

why?为什么这道题可以全排列?

首先这道题,本身就是一种穷举类的题。

像这类穷举的题用for循环是很难写的。

1、首先画出决策树:越详细越好

由此我们发现,在每一个空格处都是干的同样的事,都是枚举数组中的每一个数,因此我们可以使用递归。

2、设计代码:

全局变量:

全局变量的设计就看递归过程中涉及什么东西,并且看返回什么东西。

首先全局的结果数组:int[][] ret;

然后int[] path;path的作用就是在深度优先遍历决策树的途中记录一下我们的路径。也可以看作恢复现场。当path的长度等于nums的长度时,就说明发现了一种情况。当我们往回走的时候,就将path的最后一个数pop掉,就是恢复现场了。

最后如何剪枝呢?我们使用bool[] check;来判断是否重复使用,check里面记录的是nums中的下标。如:nums[1,2,3],当使用2时,将check[1] = true;

dfs函数:

重复子问题---

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YangZ123123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值