- 博客(2)
- 收藏
- 关注
原创 在树莓派上训练并部署YOLOv5实现实时垃圾分类
收集并标注足够数量的垃圾图片,确保每个类别的图像样本多样化。可以使用现有的公开数据集,或者手动标注和收集。使用摄像头输入流获取图像,通过预训练的模型进行检测和分类。开始训练模型,使用PyTorch的数据集加载器读取数据集,并在可视化界面中监控训练进度。将生成的ONNX文件复制到树莓派,并安装必要的依赖项,以便运行 inference。首先,确保你的树莓派系统中安装了所有需要的软件包。在YOLOv5的配置文件中添加你需要检测的垃圾类别。考虑摄像头故障或模型误判的情况,可以添加错误检测和重试机制。
2025-03-16 23:19:01
658
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅