自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 Transformer核心—自注意力机制

本文介绍了Transformer模型中的核心机制——自注意力机制。首先分析了传统RNN和CNN在处理序列数据时的局限性,进而引出注意力机制的创新思路。自注意力机制通过Query、Key、Value三个向量分别表示查询、标识和内容角色,计算词与词之间的相似度得分,经softmax归一化后加权求和得到最终输出。文章还详细阐述了多头注意力机制,通过将注意力分成多个"头"来捕捉不同特征,提高模型表达能力。最后展示了PyTorch中多头注意力层的实现代码。全文清晰阐述了自注意力机制的计算过程及其优

2025-09-05 19:54:08 779

原创 深度学习卷积神经网络项目实战——超市商品分类

基于CNN的超市商品混合颗粒度分类项目摘要 本项目使用卷积神经网络(CNN)实现超市商品的500分类,应用于自助收银场景。采用RP2K数据集,包含200万+商品图像,涵盖多角度、遮挡等真实场景。项目使用预训练的GoogLeNet模型,通过迁移学习方法,仅微调最后一层全连接层(500分类),冻结其他层参数。训练过程中采用数据增强(随机裁剪、翻转、颜色变换等)提升模型泛化能力,并配合Adam优化器和余弦学习率调度器进行50轮训练。最终实现高精度的商品分类,为零售业智能化提供技术支持。

2025-08-24 16:00:33 1466

原创 深度学习之NLP基础

自然语言处理(NLP)是人工智能的重要分支,旨在让计算机理解、处理人类语言。核心任务包括分词、词性标注、命名实体识别、情感分析等11大基础任务,广泛应用于智能客服、机器翻译、舆情分析等领域。NLP处理流程包含语料获取、预处理、特征工程、模型构建等步骤。关键技术包括词向量表示和词嵌入层,通过数值化方式将词语转化为计算机可处理的向量形式,如PyTorch中的nn.Embedding实现。

2025-08-21 20:00:01 919

原创 神经网络训练核心组件

本文介绍了梯度下降优化算法和常见激活函数。在优化算法部分,分析了传统梯度下降方法(BGD、SGD、MBGD)的局限性,并详细讲解了Momentum、AdaGrad、RMSProp和Adam四种改进算法。其中Adam结合了动量和自适应学习率的优势,成为广泛使用的优化方法。在激活函数部分,重点介绍了Sigmoid和tanh函数:Sigmoid将输入映射到(0,1)区间,但存在梯度消失问题;tanh输出范围(-1,1),具有零均值特性,能更好地缓解梯度消失。这些内容为深度学习模型训练提供了关键的理论基础和实践指导

2025-08-13 20:20:58 761

原创 深度学习之CNN网络简介

CNN(卷积神经网络)是一种专门处理网格状数据的深度学习模型,主要由卷积层、池化层和全连接层组成。卷积层通过卷积核自动提取图像的局部特征(如边缘、纹理),减少参数量;池化层通过下采样压缩数据,保留关键信息并增强模型鲁棒性。CNN通过层级结构逐步抽象特征,广泛应用于计算机视觉任务,显著提升计算效率和特征提取能力,但可能丢失部分信息。整体上,CNN通过局部特征提取和参数共享机制,在图像处理中实现了高效且高性能的建模。

2025-08-13 19:17:24 1367

原创 全连接神经网络介绍与数据集准备

本文介绍了全连接神经网络的基本概念、结构和实现方法。全连接神经网络是一种多层感知机(MLP),其特点是每层神经元与下一层所有神经元相连。文章阐述了神经网络的基本组成单元——神经元,以及隐藏层如何通过特征变换将输入数据逐步抽象化。详细讲解了PyTorch中线性层(nn.Linear)的实现原理和使用方法,包括如何构建自定义网络类和利用nn.Sequential简化模型搭建。最后,介绍了如何自定义数据集类(Dataset),实现数据加载的核心方法(init、len__和__getitem),为后续模型训练提供数

2025-08-07 20:17:15 981

原创 深度学习之pytorch安装与tensor(张量)

本文章介绍了pytorch框架的安装以及pytorch最基础的知识——张量。

2025-08-06 20:14:41 1248

原创 机器学习之线性回归与逻辑回归

本文介绍了机器学习中的线性回归算法及其核心概念。首先阐述了回归与分类的区别,指出线性回归用于预测连续型数据。文章详细讲解了线性回归的基本原理、损失函数(如MSE、MAE等)的作用,以及如何处理多特征输入的矩阵运算方法。重点介绍了梯度下降优化算法,包括其数学原理、迭代过程和公式实现,并通过单特征示例代码展示了梯度下降的具体应用。最后提到该方法可扩展到多参数场景,为机器学习模型训练提供理论基础。

2025-08-05 19:52:38 1145

原创 机器学习之KNN、贝叶斯与决策树算法

本文章所介绍的机器学习算法在演示过程中使用的API都基于sklearn库。

2025-08-05 19:44:06 1205

原创 OpenCV图像预处理(三)

摘要:图像噪点是干扰图像原始信息的杂点或斑点,影响后续处理。常见的噪点类型包括高斯噪声和椒盐噪声。消除噪点的主要方法是使用滤波器,如低通滤波器(平滑图像)和高通滤波器(锐化边缘)。具体滤波方法包括:均值滤波(取核区域均值)、方框滤波(可归一化为均值滤波)、高斯滤波(基于正态分布加权)、中值滤波(取中位数,适合椒盐噪声)和双边滤波(结合空域和值域信息,保留边缘)。不同噪声类型需采用相应滤波方法,如高斯滤波处理高斯噪声,中值滤波处理椒盐噪声。

2025-07-26 15:04:52 1187

原创 OpenCV图像预处理(二)

本文介绍了OpenCV中图像翻转和仿射变换的基本原理与实现方法。图像翻转包括垂直、水平和双向翻转三种方式。仿射变换部分详细讲解了旋转、平移、缩放和剪切四种变换的数学原理及实现,重点阐述了如何构建变换矩阵M。此外,文章还介绍了五种常用的图像插值方法(最近邻、双线性、区域插值、双三次和Lanczos插值),分析了它们的工作原理和适用场景,帮助读者理解如何在不同变换情况下保持图像质量。这些技术为图像处理中的几何变换提供了理论基础和实用实现方法。

2025-07-26 14:49:37 1308

原创 OpenCV图像预处理(一)

本文介绍了图像处理中两种主要的颜色空间(RGB和HSV)及其转换方法。RGB颜色空间适用于显示设备,但不利于颜色调节;HSV颜色空间更符合人眼感知,便于颜色检测和调节。文章详细讲解了三种颜色加法操作:cv.add()、numpy直接相加(不推荐)和加权加法。重点阐述了颜色空间转换API(cv.cvtColor)和三种灰度化处理方法:最大值法、平均值法和权重法,通过代码示例展示了如何实现图像灰度处理。这些方法在图像处理中应用广泛,能够简化图像数据,提高处理效率。

2025-07-23 20:26:53 1168

原创 OpenCV之图像基础

OpenCV(Open Source Computer Vision Library)是一个开源的跨平台计算机视觉与图像处理库,支持C/C++、Python、Java等语言开发。它广泛应用于图像处理、特征提取、视频处理、目标检测、人脸识别等领域。 在Python中,通过cv2模块使用OpenCV,图像以NumPy数组形式存储,彩色图像为三维数组(BGR通道顺序)。基本操作包括: 图像读取/显示/保存:cv2.imread()、cv2.imshow()、cv2.imwrite() 调整大小/裁剪:cv2.re

2025-07-22 19:11:19 1477

原创 python之模块(Module)和包(Package)

本文介绍了Python模块和包的基本概念及使用方法。模块是包含函数、类、变量的.py文件,分为内置模块、第三方模块和自定义模块三种。讲解了不同导入方式的优缺点,推荐使用import module方式。包是包含多个模块的文件夹,需包含__init__.py文件,用于组织模块和初始化代码。最后介绍了第三方库的安装方法,包括使用pip和国内镜像源安装,以及常用pip操作命令。文章对Python代码的组织和管理提供了清晰的指导。

2025-07-18 19:06:04 981

原创 python之迭代器与生成器

本文介绍了Python中迭代器和生成器的核心概念与应用。迭代器通过实现__iter__()和__next__()方法,支持数据遍历且只能单向访问;生成器则是特殊的迭代器,通过yield关键字实现惰性计算,节省内存。文章通过自定义倒计时迭代器、车牌图片数据处理等案例,展示了二者的实际应用场景,并对比了yield与return的区别。这些特性特别适合处理大数据流,是Python高效编程的重要工具。

2025-07-17 19:22:14 842

原创 python之面向对象编程

本文介绍了Python面向对象编程中的核心概念。主要内容包括:1)类与对象的定义,通过class关键字创建类模板,再实例化为具体对象;2)属性的两种类型 - 实例属性(每个对象独有)和类属性(所有对象共享);3)三种方法:实例方法(操作对象属性)、类方法(@classmethod修饰,操作类属性)和静态方法(@staticmethod修饰,无需访问类或实例)。文章通过Band类等实例演示了类定义、对象创建、属性访问和方法调用的基本语法和使用场景。

2025-07-16 19:25:40 1204

原创 python函数基础知识之递归函数与装饰器

本文介绍了Python中的递归函数和装饰器两大核心技术。递归函数通过自身调用实现问题的分解,必须包含终止条件防止无限递归,文中给出了斐波那契数列和阶乘的递归实现示例。装饰器是一种在不修改原函数的情况下扩展其功能的工具,文章详细讲解了普通装饰器、带参数装饰器以及装饰器链的使用方法,包括日志记录、权限验证等实际应用场景。通过具体代码示例,展示了如何在函数执行前后添加额外操作,以及如何将多个装饰器组合使用。

2025-07-15 19:23:22 408

原创 python基础知识之自定义函数

本文介绍了Python自定义函数的基本概念和使用方法。主要内容包括:1)函数定义语法及返回值说明;2)7种函数调用方式:基本调用、位置传参、默认值传参、关键字传参、可变位置参数(args)、可变关键字参数(**kwargs)以及参数解包技巧;3)特别强调了参数传递顺序规则和注意事项。文章通过具体代码示例展示了每种调用方式的用法,最后总结了对和**参数的理解技巧,可作为函数参数传递的实用参考指南。

2025-07-14 18:57:35 261

原创 python基础知识之表达式、语句、函数(内置函数)

本文介绍了Python中的表达式和语句的基本概念及用法。主要内容包括: 表达式部分: 基础表达式类型(算术、比较、逻辑、赋值、成员、三元表达式) 推导式(列表、集合、字典推导式) Lambda表达式和生成器表达式 语句部分: 赋值语句和条件语句(if-elif-else和match-case) 循环语句(for和while循环,range语句) 控制语句(break、continue、pass) 异常处理语句(try-except-finally、raise、assert) 函数部分: 函数定义语法 内置函

2025-07-11 19:08:29 375

原创 python基础知识之变量——复合类型变量

本文总结了Python中的四种复合数据类型:列表、元组、字典和集合。列表使用方括号创建,支持增删查改操作;元组用圆括号创建,是不可变容器;字典以键值对形式存储数据;集合为可变容器,元素唯一且无序。文章详细介绍了每种类型的创建方法、基本操作和常用API,包括列表的索引访问、元组的解构赋值、字典的键值访问以及集合的添加删除操作。这些数据类型是Python编程中的基础容器,掌握它们的使用方法对数据处理至关重要

2025-06-12 11:23:22 986

原创 python基础知识之变量——基础变量

本文介绍了Python编程的基础知识,主要包括:1.注释方法(单行注释快捷键Ctrl+/,多行注释用三引号);2.输入输出函数(input和print);3.变量命名规则与赋值方式;4.基础数据类型(字符串、数字、布尔、复数、字节串等)及其操作;5.字符串格式化(%格式化、f-string)和常用方法;6.类型转换函数(int、float、round等);7.特殊的None值表示。文章通过代码示例详细说明了字符串索引、切片、转义等操作,以及数字类型的不同表示方法,适合Python初学者快速掌握基础语法要点。

2025-06-11 14:13:09 968

原创 AI入门——python环境搭建

本文提供了Python开发环境的详细安装配置指南。首先介绍Anaconda下载安装步骤并强调必须配置环境变量;其次提供PyCharm或VSCode的下载选择建议;最后分别说明Anaconda环境配置、PyCharm解释器设置以及VSCode插件安装等关键配置步骤,完成Python开发环境搭建。全文以简明操作步骤为主,突出环境变量配置等注意事项,为开发者提供一站式环境搭建指导。

2025-06-11 10:50:06 460 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除