1.1 数学建模简介
1.1.1 什么是数学建模
数学建模是指对现实世界的某一特定对象,为了特定的目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
它既不是纯粹的数学竞赛,也不是纯粹的计算机竞赛,而是涉及多学科、多领域,考查学生处理实际问题的综合能力。它不像考试,更像是一个课题小组在规定的时间内突击完成一项任务。
对于生活中复杂的实际问题,发现其内部规律,用数学语言将其描述出来,进而把这个复杂的实际问题转化为一个简化的数学问题,这就是数学模型。
1.1.2 初等数学模型案例
例1:人、猫、鸟、米均要过河,船上除一人划船外,最多还能运载1物,而人不在场时,猫要吃鸟,鸟要吃米,问人、猫、鸟、米要如何过河?
模型假设:人、猫、鸟、米要从河的南岸到河的北岸,由题意,在过河的过程中,两岸的状态要满足一定条件,所以该问题为有条件的状态转移问题。
模型建立:我们用(w,x,y,z), w, x, y, z=0或1,表示南岸的状态。例如(1,1,1,1)表示他们都在南岸,(0,1,1,0)表示猫,鸟在南岸,人、米在北岸;然而有些状态是允许的,有些状态是不允许的,用穷举法可以列出全部10个允许状态向量