1.1 数学建模简介
1.1.1 什么是数学建模
数学建模是指对现实世界的某一特定对象,为了特定的目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
它既不是纯粹的数学竞赛,也不是纯粹的计算机竞赛,而是涉及多学科、多领域,考查学生处理实际问题的综合能力。它不像考试,更像是一个课题小组在规定的时间内突击完成一项任务。
对于生活中复杂的实际问题,发现其内部规律,用数学语言将其描述出来,进而把这个复杂的实际问题转化为一个简化的数学问题,这就是数学模型。
1.1.2 初等数学模型案例
例1:人、猫、鸟、米均要过河,船上除一人划船外,最多还能运载1物,而人不在场时,猫要吃鸟,鸟要吃米,问人、猫、鸟、米要如何过河?
模型假设:人、猫、鸟、米要从河的南岸到河的北岸,由题意,在过河的过程中,两岸的状态要满足一定条件,所以该问题为有条件的状态转移问题。
模型建立:我们用(w,x,y,z), w, x, y, z=0或1,表示南岸的状态。例如(1,1,1,1)表示他们都在南岸,(0,1,1,0)表示猫,鸟在南岸,人、米在北岸;然而有些状态是允许的,有些状态是不允许的,用穷举法可以列出全部10个允许状态向量,(1,1,1,1)(1,1,1,0)(1,1,0,1)(1,0,1,1)。。。
模型求解:将10个允许状态用10个点表示,并且今当某个允许状态经过一个允许决策仍为允许状态,则这两个允许状态间存在连线,而构成一个图,在其中寻找一条从(1,1,1,1)到(0,0,0,0)的路径,这样的路径就是一个解。
模型推广:适当地设置状态和决策,确定状态转移律,建立多步决策模型,是有效地解决很广泛的一类问题的解法。
1.1.3 数学建模的基本步骤与论文写作
一、数学建模的基本步骤
1.模型准备及问题分析
抓住问题的本质和主要因素,确定问题的关键词,进行查阅资料和文献,了解问题的实际背景、相关数据或相关研究进展情况,获得关键资料,并初步确定研究问题的类型。仔细分析问题关键词和数据信息,可适当补充一些相关信息和数据(具有一定的权威性)。
2.模型的假设
竞赛题目都是来源于实际生活,所涉及的方面和受影响的因素比较多,但是建模的时候不可能面面俱到,所以需要结合问题的实际意义,适当地将一些因素简化。抓住问题关键,忽略次要因素,进行合理化的简要假设,使建立的模型更趋优化和合理,也是评价一个模型优劣的重要条件。
3.模型的建立
通过所做的分析和假设,结合相关的数学基本原理和理论知识,将实际问题转化为数学模型,可以用数学语言、符号进行描述和表达问题的内在现象和规律。运用数学方程式、图形、表格、数据和算法程序等形式表示。
4.模型的求解
MatLab, Lingo, SPSS等,有时还需掌握一门编程语言,或新的软件。
5.结果分析与检验
对所求的结果,针对问题的实际情况和意义进行分析。可以通过误差分析、灵敏度分析,来表现模型解决实际问题效果及实际应用的范围。
6.论文写作
按照数学模型的基本步骤,建立一个恰当的数学模型并求解,使参赛者清晰明了地表达解题思路,以展示自己能力,也是评委评定一篇论文好坏的唯一依据。
7.模型的应用
在进行大量研究和演绎后,最终还需将其回归到现实,看其是否具有合理性和可行性。这需要用实际信息或数据进行验证。
后续会继续更新与数学建模相关的知识,感谢观看!