Java常用数论(gcd,lcm,埃氏筛)

    // 最大公约数(欧几里得算法)
	public static int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }

    // 最小公倍数(利用 GCD)
    public static int lcm(int a, int b) {
        return a / gcd(a, b) * b;
    }


    // 判断是否是素数(试除法,适合 <= 1e6 的数)
    public static boolean isPrime(int n) {
        if (n <= 1) return false;
        if (n == 2) return true;
        if (n % 2 == 0) return false;
        for (int i = 3; i * i <= n; i += 2) {
            if (n % i == 0) return false;
        }
        return true;
    }

    // 判断是否是闰年
    public static boolean isLeapYear(int year) {
        return (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
    }

    // 埃氏筛法:生成 <= n 的所有素数
    public static boolean[] sieve(int n) {
        boolean[] isPrime = new boolean[n + 1];
        Arrays.fill(isPrime, true);
        isPrime[0] = isPrime[1] = false;
        for (int i = 2; i * i <= n; i++) {
            if (isPrime[i]) {
                for (int j = i * i; j <= n; j += i) {
                    isPrime[j] = false;
                }
            }
        }
        return isPrime;
    }

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值