目录
卷积神经网络 (Convolutional Neural Network, CNN)
-
神经网络 (Neural Network)
神经网络是一种模仿人脑神经元连接方式的计算模型,它由大量的节点,即神经元,通过复杂的网络结构相互连接。这种模型能够进行高效的数据处理和分析,广泛应用于图像识别、语音识别、自然语言处理等领域。每个神经元接收来自其他神经元的输入信号,通过激活函数处理后输出,层与层之间形成复杂的映射关系,从而实现数据的深度学习。 -
激活函数 (Activation Function)
激活函数是神经网络中不可或缺的部分,它为神经元引入了非线性因素,使得神经网络能够捕捉到输入数据中更为复杂的模式和关系。常见的激活函数包括Sigmoid函数,它将输入压缩到0到1之间,适合二分类问题;ReLU函数,即线性整流函数,对于正输入保持不变,负输入则输出为零,计算简单且在深度网络中效果良好;Tanh函数,将输入映射到-1到1之间,在某些情况下比Sigmoid函数表现更好。 -
损失函数 (Loss Function)
损失函数用于量化模型预测值与实际值之间的差异,它是评估模型性能的关键指标。在训练过程中,通过最小化损失函数来优化模型的参数。常见的损失函数有均方误差(MSE),它计算预测值与真实值之间差的平方的平均值;交叉熵(Cross-Entropy)则常用于分类问题,衡量预测概率分布与真实标签的匹配程度。 -
梯度下降 (Gradient Descent)
一种优化算法,它通过迭代计算损失函数关于模型参数的梯度,并根据梯度的方向调整参数,以寻找损失函数的最小值。这个过程就像是在下山,每次都沿着最陡峭的方向迈出一步,直到到达山底。 -
学习率 (Learning Rate)
学习率是梯度下降算法中的一个超参数,它控制着参数更新的幅度。合适的学习率能够加快收敛速度,但如果过大,可能会导致在最小值附近震荡甚至发散;而学习率过小,则会导致训练过程缓慢,收敛到最小值需要更多的时间。 -
批量大小 (Batch Size)
批量大小定义了一次训练过程中用于计算损失梯度的样本数量。较大的批量可以提高内存利用率和计算效率,但可能导致模型对训练数据的泛化能力下降;较小的批量则有助于模型捕捉更多的数据特征,但可能会增加训练时间。 -
卷积神经网络 (Convolutional Neural Network, CNN)
卷积神经网络是一种专门为处理图像数据设计的神经网络结构。它通过卷积层和池化层有效地提取图像中的局部特征,并在全连接层中进行分类或回归任务。 -
池化层 (Pooling Layer)
池化层位于卷积层之后,用于降低特征图的尺寸,减少计算量,同时保留重要的特征信息。最大池化选择每个局部区域内的最大值作为输出,而平均池化则计算平均值。这两种方法都能有效降低过拟合的风险。 -
全连接层 (Fully Connected Layer)
全连接层是神经网络中的一个标准层,其中每个神经元都与前一层的所有神经元相连。这种层通常位于网络的最后几层,用于将学到的特征组合并进行分类或回归预测。 -
正则化 (Regularization)
正则化是一种防止模型过拟合的技术,通过对模型复杂度施加惩罚来实现。L1正则化和L2正则化是两种常见的正则化方法,分别通过添加参数的绝对值和平方值到损失函数中。 -
丢弃法 (Dropout)
Dropout是一种在训练过程中随机“丢弃”网络中一部分神经元的技术,即这些神经元在正向传播和反向传播中被暂时忽略。这种方法能够强制网络学习更加鲁棒的特征,减少模型对特定训练样本的依赖,从而提高泛化能力。 -
优化器 (Optimizer)
优化器是实现梯度下降算法的具体函数,它不仅包含梯度下降的基本原理,还可能包含动量、自适应学习率等高级特性。常见的优化器有SGD(随机梯度下降)、Adam(自适应矩估计)、RMSprop等,它们在处理不同类型的优化问题时各有优势。 -
超参数 (Hyperparameter)
超参数是模型参数之外,用于控制模型训练过程的参数。它们不是通过训练数据学习得到的,而是需要通过经验或实验来调整。超参数的选择对模型性能有着重要影响,常见的超参数包括学习率、批量大小、层数、神经元数量、正则化系数等。 -
过拟合 (Overfitting)
过拟合是指模型在训练数据上取得了非常好的性能,但泛化能力差,在新数据上表现不佳的现象。这通常是因为模型学习到了训练数据中的噪声和细节,而没有捕捉到真正的数据分布。为了防止过拟合,可以采用正则化、Dropout、数据增强等方法来提高模型的泛化能力。