因为这道题可以转化为寻找最长的序列,然后再用总数减去最长方案数即为答案,而最长的方案数可以通过dfs寻找最长序列,代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1e5;
int arr[N] = {0};//先定义全局变量数组
int n;
int res = 0;//res用来记录每一轮的最长长度
int ans = 0;//ans用来记录最长的长度
int get_first(int x){//用来获取后一位的第一位数
while(x > 10){
x /= 10;
}
return x;
}
int get_last(int x){//用来获取前一位的最后一位数
return x % 10;
}
void dfs(int x, int y)//x表示当前考虑到了第几个数, y表示需要考虑的上一个数的位置,如果y为0表示当前考虑的是第一个数
{
if(x > n){//如果已经考虑完了,开始进行返回
return;
}
if(y == 0){//如果当前考虑的是第一个数
res++;//将第一位记录进去
dfs(x + 1, x);//更新y并且递归到下一层
}
else if(get_last(arr[y]) != get_first(arr[x])){//如果当前的首位不等于前一位的末尾
dfs(x + 1, y);//保持前一位不变,略过当前一位继续递归到下一层
}
else{//如果满足当前条件
res++;
dfs(x + 1, x);//将前一位更新,再进行下一层
}
}
int main(void)
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);//这三句话用于提升cin和cout的速度
cin >> n;
for(int i = 1; i <= n; i++){
cin >> arr[i];
}
for(int i = 1; i <= n; i++){
res = 0;//更新res
dfs(i, 0);//从第i个数开始考虑,寻找最长的序列
ans = max(ans,res);//更新ans
if(ans >= n - i){//如果当前的方案(ans)已经大于剩下的数字数量,就进行剪枝,省去后面的搜索
break;
}
}
cout << n - ans << endl;//总数目 - 当前最长方案数,就是所需要的答案
return 0;
}
但是该做法太过暴力,因此只能通过部分案例