本篇博客给大家带来的是动态规划算法的知识点.
🐎文章专栏: 动态规划
🚀若有问题 评论区见
❤ 欢迎大家点赞 评论 收藏 分享
如果你不知道分享给谁,那就分享给薯条.
你们的支持是我不断创作的动力 .
王子,公主请阅🚀
要开心
要快乐
顺便进步
1. 第 N 个泰波那契数
题目链接: 1137. 第 N 个泰波那契数
题目内容:
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。
示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537
第一 步骤分析
1. 状态表示
dp[i] 表示: 第 i 个泰波契数的值
2. 状态转移方程
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2. 由题意可知状态方程: dp[i] = dp[i-1] + dp[i-2] + dp[i-3]; 一般来说状态方程都是需要自己分析出来的, 此题比较简单, 直接给出.
3. 初始化
保证状态转移方程中的dp值不越界, 即填写dp 表不越界. 由题可知: dp[0] = 0,dp[1] = 1,dp[2] = 1;
4. 填表顺序
从左到右填表, 因为要想直到dp[i], 必须先知道dp[i-1],dp[i-2],dp[i-3].
5. 返回值
由题可知返回第 n 个泰波那契数 Tn 的值。return dp[n]即可
第二 代码实现
class Solution {
public int tribonacci(int n) {
//1.创建一个dp表
int[] dp = new int[n+1];
//2.初始化
if(n == 0) return n;
if(n == 1 || n == 2) return 1;
dp[0] = 0;dp[1] = 1;dp[2] = 1;
//3.填表
for(int i = 3;i <= n;++i) {
dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
}
return dp[n];
}
}
2. 三步问题
题目链接: 面试题 08.01. 三步问题
题目内容:
三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。
示例1:
输入:n = 3
输出:4
说明: 有四种走法
示例2:
输入:n = 5
输出:13
提示:
n范围在[1, 1000000]之间
第一 步骤分析
1. 状态表示
dp[i] 表示以 i 为结束位置的总的上楼梯方式.
2. 状态转移方程
分析可得, dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
3. 初始化
避免填表时越界, 要对dp表先进行初始化, 从1下标开始, 0下标没有意义, dp[1] = 1, dp[2] = 2, dp[3] = 4.