【动态规划】风雨不动安如山,赖有砥柱立中流 - 斐波那契数列模型

在这里插入图片描述

本篇博客给大家带来的是动态规划算法的知识点.
🐎文章专栏: 动态规划
🚀若有问题 评论区见
欢迎大家点赞 评论 收藏 分享
如果你不知道分享给谁,那就分享给薯条.
你们的支持是我不断创作的动力 .

要开心

要快乐

顺便进步

1. 第 N 个泰波那契数

题目链接: 1137. 第 N 个泰波那契数

题目内容:

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:

输入:n = 25
输出:1389537

第一 步骤分析

1. 状态表示

dp[i] 表示: 第 i 个泰波契数的值

2. 状态转移方程

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2. 由题意可知状态方程: dp[i] = dp[i-1] + dp[i-2] + dp[i-3]; 一般来说状态方程都是需要自己分析出来的, 此题比较简单, 直接给出.

3. 初始化

保证状态转移方程中的dp值不越界, 即填写dp 表不越界. 由题可知: dp[0] = 0,dp[1] = 1,dp[2] = 1;

4. 填表顺序

从左到右填表, 因为要想直到dp[i], 必须先知道dp[i-1],dp[i-2],dp[i-3].

5. 返回值

由题可知返回第 n 个泰波那契数 Tn 的值。return dp[n]即可

第二 代码实现

class Solution {
   
    public int tribonacci(int n) {
   
        //1.创建一个dp表
        int[] dp = new int[n+1];
        //2.初始化
        if(n == 0) return n;
        if(n == 1 || n == 2) return 1;

        dp[0] = 0;dp[1] = 1;dp[2] = 1;
        
        //3.填表
        for(int i = 3;i <= n;++i) {
   
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
        }
        return dp[n];
    }
}

2. 三步问题

题目链接: 面试题 08.01. 三步问题

题目内容:

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:

输入:n = 3
输出:4
说明: 有四种走法
示例2:

输入:n = 5
输出:13
提示:

n范围在[1, 1000000]之间

第一 步骤分析

1. 状态表示

dp[i] 表示以 i 为结束位置的总的上楼梯方式.

2. 状态转移方程

在这里插入图片描述

分析可得, dp[i] = dp[i-1] + dp[i-2] + dp[i-3];

3. 初始化

避免填表时越界, 要对dp表先进行初始化, 从1下标开始, 0下标没有意义, dp[1] = 1, dp[2] = 2, dp[3] = 4.

评论 103
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值