关于一个圆被多个同径的圆相围的一个证明想法和通用方程,由此衍生出来一些想法框架(方程:r=R/(csc(π/n)±(1))

当一个圆的半径为R时,能否有整数个同径R圆围住初始圆,明显当外圆为6个,正好可以围住初始圆,且每两个外圆相切,那么我们如何证明?相信朋友们都有很多证明方法,这里写下我的看法,欢迎大家提出各自看法和指正不足之处。

c1204e515a644895817a6fb4eb112cc4.heic

图1.1 手绘有点误差

1."先假设外圆为6个时,正好可以围住初始圆"

证明:我们画一个半径为R的圆,在以同圆心画一个半径为2R的圆我们画一个半径为R的圆,在以同圆心画一个半径为2R的圆,很明显外切的圆的圆心都在半径为2R的圆上,分别连接外切圆圆心,明显一个正六边形,可知六边形由六个正三角形合成,以B为圆心,R为半径画圆,该圆一定经过BC中点,由于对称性,该圆也经过BC右边线段中点,因为正六边形有六个顶点,故有六个圆可以围住。

2.利用公式推导证明(我们由R≠r推出一般情况,由一般情况在令R=r).

eac808876c7d45afb4a1388a720f5dc4.jpg

 图1.2

我们画一个半径为R的圆,在以同圆心画一个半径为R+r的圆,当半径为r的圆与R的相切时,圆心一定在R+r的圆上,不妨在做一个半径为r的圆,则这三个圆两两相切,假设有n个半径为r的圆可以把半径为R的圆围住,且这n个外圆也相切,我们得到一个关系半径为R+r的圆的周长一定等于弧长BC的n倍。(令H代表圆的周长,U代表弧长BC)

H=2(r+R)π

U=(R+r)(θ1+θ2)

由于三角形ABC为等腰三角形所以θ1=θ2

U=2(r+R)θ1

易知AD⊥BC且D为垂足,故AD为中垂线

r/(r+R)=sinθ1,H=nU→2(r+R)π=2n(r+R)θ1

                                             ↙

π/n=θ1→r/(r+R)=sinπ/n

r=R/((cscπ/n)-1) 

令r=R时,可以解得,n=6 ,证必.

3.以上仅仅是外切情况,如果是内切的话如何做呢?很简单,只需要把R+r换成R-r即可前提

(R>r).

可以得到:r=R/((cscπ/n)+1) .

4如果是在初始圆上进行围,既圆心在初始圆边上.很简单只需要把R-r换成R即可.

可以得到:r=R/cscπ/n.

4.总结

外切:r=R/((cscπ/n)-1) ;

内切:r=R/((cscπ/n)+1);(R>r)

圆上:r=R/cscπ/n;

 

 

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值