数学建模学习笔记
文章平均质量分 98
个人数学建模学习笔记
小李很执着
随性且自由,心安即是归处。
所涉及代码都收录在我的gitee仓库里https://gitee.com/sleep-during-class,具体代码在专栏里有对应仓库链接!!!
免费资源,免费专栏,一起学习!!!!
展开
-
从模型到实践:新时代【数学建模竞赛论文】的结构、规范与创新解析
以上是对数学建模竞赛论文的详细讲解。通过这些内容,希望能够帮助你更好地理解数学建模竞赛论文的写作要求、格式规范、注意事项以及评判标准,从而在竞赛中取得优异的成绩。如果有任何进一步的问题或需要更深入的探讨,随时可以提出来,我会尽力帮助你。原创 2024-09-03 00:13:18 · 2618 阅读 · 147 评论 -
【数学建模】——【A题 信用风险识别问题】全面解析
信用风险评价方法,包括数据预处理、特征选择、信用评分模型的构建及其比较、信用等级划分等多个方面,旨在提升信用风险评价的准确性和可靠性。原创 2024-08-02 18:10:59 · 8584 阅读 · 55 评论 -
【数学建模】【优化算法】:【MATLAB】从【一维搜索】到】非线性方程】求解的综合解析
从一维搜索问题到非线性方程求解的各种优化算法,包括黄金分割法、线性规划、梯度下降法、拉格朗日乘数法、二次规划、混合整数线性规划、多目标规划、极大最小化、半无限优化、线性最小二乘法和牛顿法等。原创 2024-07-31 14:01:47 · 7278 阅读 · 108 评论 -
【数学建模】——matplotlib简单应用
Matplotlib 是一个强大的 Python 可视化库,广泛应用于绘制各种图形。其基本用法包括导入必要的模块,如 numpy 和 matplotlib.pyplot,并生成数据进行绘图。例如,可以通过线图、散点图、柱状图和雷达图来展示数据。创建三维图形需要使用 mpl_toolkits.mplot3d 库。使用 matplotlib 进行可视化可以通过简单的代码实现,包括设置标签、图例、颜色和线型等,以生成直观的图表来分析和展示数据。原创 2024-07-28 17:12:12 · 690 阅读 · 17 评论 -
【Python数值分析】革命:引领【数学建模】新时代的插值与拟合前沿技术
插值与拟合的基本原理、常用方法及其Python实现,涵盖了拉格朗日插值、牛顿插值、样条插值等插值方法,以及线性拟合、多项式拟合、指数拟合、对数拟合和幂函数拟合等拟合方法,并通过具体的代码实例展示了插值与拟合在数据平滑、图像处理、数值模拟、数据预测、数据建模、物理实验数据分析和工程设计中的实际应用。原创 2024-07-29 18:04:53 · 3141 阅读 · 98 评论 -
打造一篇完美的【数学建模竞赛论文】:从准备到撰写的全面指南
数学建模竞赛是一项综合性很强的比赛,需要团队成员在短时间内进行高效的合作,解决实际问题并撰写出高质量的论文。本文详细讲解了撰写数学建模竞赛论文的各个环节和注意事项,希望能够帮助参赛队员提高论文质量,在竞赛中取得优异成绩。祝大家在数学建模竞赛中取得圆满成功!原创 2024-07-27 21:10:08 · 10417 阅读 · 107 评论 -
【数学建模】——【python】实现【最短路径】【最小生成树】【复杂网络分析】
这三个问题分别涉及图论中的最短路径问题、最小生成树问题以及结合这两种方法的复杂网络分析。第一个问题使用Dijkstra算法计算并可视化了从一个指定城市到其他所有城市的最短路径,第二个问题使用Kruskal算法找到并绘制了一个无向带权图的最小生成树,第三个问题在最小生成树的基础上,使用Dijkstra算法计算并展示了从核心城市到其他所有城市的最短路径。每个问题都结合了图的构建、算法的应用和结果的可视化。原创 2024-07-24 23:35:41 · 2065 阅读 · 18 评论 -
【数学建模】——前沿图与网络模型:新时代算法解析与应用
图与网络模型的基本概念、矩阵表示、最短路径、最小生成树、着色问题、旅行商问题、网络最大流问题及关键路径法等主题,结合PPT内容和Python代码实例,深入解析了每个主题的核心算法和应用场景,提供了可视化代码和图形展示,以便更好地理解和应用这些重要的图论算法。原创 2024-07-23 22:05:26 · 2937 阅读 · 110 评论 -
利用【MATLAB】和【Python】进行【图与网络模型】的高级应用与分析】
图与网络模型是解决复杂系统问题的重要工具,通过合理的算法和数学模型,可以有效地解决最短路径、最小生成树等问题。利用MATLAB和Python等工具,可以大大简化计算过程,提高工作效率。在实际应用中,图与网络模型广泛用于通信网络建设、物流运输规划等领域,具有重要的现实意义。希望这篇详细的博客总结能够帮助您理解和应用图与网络模型的基本概念、算法及其在实际问题中的应用。原创 2024-07-21 22:49:59 · 8625 阅读 · 135 评论 -
【数学建模】——多领域资源优化中的创新应用-六大经典问题解答
通过建立数学模型并求解,解决了不同情境下的资源配置和优化问题。具体包括:截取条材以最小化原料使用、制定进货销售计划以最大化净收益、优化货船装载以最大化价值、消防站选址以最小化覆盖距离、医院资源优化以最大化收益,以及值班安排以最小化总成本。这些问题展示了线性规划和整数规划在实际应用中的广泛用途,尤其在资源分配和决策优化中发挥了重要作用。原创 2024-07-17 22:07:09 · 4772 阅读 · 106 评论 -
【数学建模】技术革新——Lingo的使用超详解
Lingo是一款功能强大的数学建模和优化求解工具,广泛用于线性规划、整数规划和非线性规划等领域。其基本语法包括变量声明、常量声明、目标函数定义和约束条件设置。通过@VARIABLES和@CONSTANTS关键字声明变量和常量,使用MAX或MIN定义目标函数,并通过线性或非线性表达式设置约束条件。Lingo支持二进制变量和整数变量声明,通过@BIN和@GIN关键字实现。注释可以用!添加,以提高代码可读性。掌握这些基础知识,可以帮助用户构建并求解复杂的优化模型。原创 2024-07-16 22:47:24 · 6247 阅读 · 86 评论 -
新时代多目标优化【数学建模】领域的极致探索——数学规划模型
数学规划模型是数学建模中用于描述和解决优化问题的一类模型。它通过构建目标函数和约束条件,将实际问题转化为数学形式,旨在寻找满足约束条件的最优解。数学规划模型广泛应用于各个领域,包括资源分配、生产计划、物流管理和金融投资等,通过线性规划、非线性规划、整数规划等方法,帮助决策者在复杂环境中做出最优选择。原创 2024-07-15 22:05:58 · 4477 阅读 · 126 评论 -
【数学建模】——【线性规划】及其在资源优化中的应用
线性规划(Linear Programming, LP)是运筹学的一个重要分支,主要研究在给定约束条件 下找到目标函数的最大值或最小值。它广泛应用于生产管理和经济活动中,帮助合理利用有限资源以获得最佳经济效益。主要应用包括资源优化利用和任务最大化问题。 线性规划的数学模型包括三个要素:线性约束条件、变量取值限制和目标函数。可行条件包括前两项,优化条件是目标函数。建立模型、求解模型、结果分析是线性规划的一般步骤。通过线性规划方法,可以实现科学的资源分配和优化。原创 2024-07-14 23:58:50 · 1518 阅读 · 25 评论 -
【数学建模与优化】:解析与实践
数学建模是将复杂的现实问题转化为简化的数学问题,通过数学模型进行分析和解决的过程。数学模型的分类和应用领域广泛,通过合理利用资源,优化模型可以在工程、经济、管理等各个领域中发挥重要作用。通过实际问题中的应用实例,可以更好地理解和掌握优化模型的建立与分析方法。原创 2024-07-14 23:27:01 · 1066 阅读 · 3 评论 -
【数学建模】——力学模型建立的基本理论及方法
数学建模中力学模型建立的基本理论和方法,包括牛顿力学、能量守恒定律、动量守恒定律以及刚体力学,介绍了自由体图、平衡方程、运动方程、能量法和动量法等基本方法,并通过具体图例分析了简单摆模型的摆动运动,展示了从问题描述到结果验证的力学模型建立步骤。原创 2024-07-13 23:26:17 · 2090 阅读 · 22 评论 -
【数学建模】——数学规划模型
数学规划模型是解决优化问题的强大工具,通过建立数学模型,可以清晰地描述问题、分析问题并找到最优解。不同类型的数学规划模型适用于不同的问题类型,掌握这些基本概念和求解方法,可以有效地应用数学规划模型解决实际问题。原创 2024-07-13 15:45:35 · 1766 阅读 · 7 评论 -
利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案
建立线性规划模型,以解决生产优化问题。通过定义决策变量、目标函数和约束条件,使用Python的SciPy库中的linprog函数求解模型,并验证结果的合理性。最终,确定了在资源限制条件下最大化利润的最优生产方案.原创 2024-07-11 00:18:36 · 6207 阅读 · 84 评论 -
揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用
Seaborn提供了高级接口,使得绘制复杂的统计图表变得简单且直观。与Matplotlib相比,Seaborn的默认设置和样式更加美观,用户无需进行繁琐的配置即可生成专业的图表。2. 支持多种图表类型Seaborn支持多种图表类型,包括但不限于:散点图(Scatter Plot),箱线图(Box Plot),小提琴图(Violin Plot),条形图(Bar Plot),回归图(Regression Plot),热力图(Heatmap)原创 2024-07-05 14:09:09 · 3445 阅读 · 81 评论 -
【Python数据分析与可视化】:使用【Matplotlib】实现销售数据的全面分析 ——【Matplotlib】数模学习
Matplotlib是一个功能强大且灵活的Python库,非常适合用于数学建模和数据可视化。通过以上详细的示例和解析,你可以掌握Matplotlib的基本用法,并在实际项目中应用这些技能进行数据分析和展示。随着你对Matplotlib的深入了解,你可以进一步探索更多高级功能,如自定义图形样式、添加图例、调整图形布局等,使你的图形更具专业性和表现力。原创 2024-06-28 15:34:04 · 2619 阅读 · 48 评论 -
【数学建模】——【python库】——【Pandas学习】
在PyCharm中使用Pandas进行数据读取、清洗、处理、分析和保存,应用Pandas进行环境设置、数据加载、预处理、分析、可视化到简单建模的全过程。欢迎友友的提问指导!原创 2024-06-27 01:39:50 · 2640 阅读 · 30 评论 -
【数学建模】—【Python库】—【Numpy】—【学习】
NumPy(Numerical Python)是Python编程语言的一个库,支持大规模的多维数组与矩阵运算,此外还提供了大量的数学函数库。NumPy在科学计算和数据分析领域有着广泛的应用。其核心是一个高效的多维数组对象,称为ndarray。原创 2024-06-25 13:43:33 · 3506 阅读 · 102 评论 -
【数学建模】—【新手小白到国奖选手】—【学习路线】
多参加数学建模竞赛,如全国大学生数学建模竞赛和美赛,通过竞赛积累经验,提升实战能力。竞赛准备包括团队组建、题目选择、文献查找、模型构建和求解、论文撰写和修改等步骤。通过系统的学习和实践,你可以逐步提升数学建模能力,最终在相关竞赛中取得优异成绩,实现从初学者到专家的飞跃。原创 2024-06-20 21:33:53 · 11094 阅读 · 99 评论