吴恩达机器学习2022第一课

一、监督学习Surpervised Learning

监督学习指的就是我们给学习算法一个数据集。这个数据集由“正确答案”组成。

比如预测房价和预测是否是恶性肿瘤

 回归这个词的意思是,我们在试着推测出这一系列连续值属性。

分类指的是,我们试着推测出离散的输出值:0或1良性或恶性,而事实上在分类问题中,输出可能不止两个值。

二、无监督学习 

无监督学习中没有任何的标签或者是有相同的标签或者就是没标签。无监督学习算法可能会把这些数据分成两个不同的簇。所以叫做聚类算法。 

三、单变量线性回归

让我们通过一个例子来开始:这个例子是预测住房价格的,我们要使用一个数据集,数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集。比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这个数据模型上来看,也许你可以告诉你的朋友,他能以大约220000(美元)左右的价格卖掉这个房子。这就是监督学习算法的一个例子

假使我们回归问题的训练集(Training Set)如下表所示: 

 

 代价函数3d图长这样,最低点表示最合理选择

 

代价函数的样子,等高线图,则可以看出在三维空间中存在一个使得$J(\theta_{0}, \theta_{1})$最小的点。 

 

 梯度下降

梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数$J(\theta_{0}, \theta_{1})$的最小值。

想象一下你正站立在山的这一点上,站立在你想象的公园这座红色山上,在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己要在某个方向上,用小碎步尽快下山。这些小碎步需要朝什么方向?如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,你再看看周围,然后再一次想想,我应该从什么方向迈着小碎步下山?然后你按照自己的判断又迈出一步,重复上面的步骤,从这个新的点,你环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到你接近局部最低点的位置。 

批量梯度下降(batch gradient descent)算法的公式为: 

其中$a$是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。 

如果学习率$a$过小,则达到收敛所需的迭代次数会非常高;如果学习率$a$过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:

\alpha=0.01,0.03,0.1,0.3,1,3,10.

正规方程是通过求解下面的方程来找出使得代价函数最小的参数的:$\frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0$

梯度下降正规方程
需要选择学习率$\alpha$不需要
需要多次迭代一次运算得出
当特征数量$n$大时也能较好适用需要计算${​{\left( {​{X}^{T}}X \right)}^{-1}}$ 如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为$O\left( {​{n}^{3}} \right)$,通常来说当$n$小于10000 时还是可以接受的
适用于各种类型的模型只适用于线性模型,不适合逻辑回归模型等其他模型

只要特征变量的数目并不大,标准方程是一个很好的计算参数$\theta $的替代方法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。

正规方程的python实现:

import numpy as np
    
 def normalEqn(X, y):
    
   theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X)
    
   return theta

四、逻辑回归

在这个以及接下来的几个视频中,开始介绍分类问题。

在分类问题中,你要预测的变量 � 是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。

在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。

 python代码实现:

import numpy as np
    
def sigmoid(z):
    
   return 1 / (1 + np.exp(-z))

该函数的图像为:

 线性回归的代价函数为:$J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{1}{2}{​{\left( {h_\theta}\left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}}$ 。 我们重新定义逻辑回归的代价函数为:$J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{​{Cost}\left( {h_\theta}\left( {x}^{\left( i \right)} \right),{y}^{\left( i \right)} \right)}$

 

 Python代码实现:

import numpy as np
    
def cost(theta, X, y):
    
  theta = np.matrix(theta)
  X = np.matrix(X)
  y = np.matrix(y)
  first = np.multiply(-y, np.log(sigmoid(X* theta.T)))
  second = np.multiply((1 - y), np.log(1 - sigmoid(X* theta.T)))
  return np.sum(first - second) / (len(X))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值