11. 盛最多水的容器 - 力扣(LeetCode)
一、题目要求
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1] 输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
二、解法1:暴力破解 O(N^2)
遍历所有情况选出最大值,但是这样会超出时间限制
class Solution {
public:
int maxArea(vector<int>& height) {
int ret = 0;
for(int i = 0;i < height.size();i++)
{
for(int j = i+1;j < height.size();j++)
{
int v = (j-i)*min(height[i],height[j]);
if(ret < v)
ret = v;
}
}
return ret;
}
};
三、解法2 :双指针法 O(N)
这个方法就是利用木桶效应:最短的柱子才决定容器的容积。所以先让容器的底边最长,得出容积后淘汰短的柱子,这是因为容器的底边最长时已经是短柱子可以达到的最大容积了(高度不变或变小,底边只能变小),而长柱子则是不确定的(底边只能变小,但是高度可能更大),这样的话每次都可以淘汰一根柱子。
顺序是从两边向中间遍历:
class Solution {
public:
int maxArea(vector<int>& height) {
int ret = 0;
int left = 0;
int right = height.size()-1;
while(left < right)
{
int v = (right-left)*min(height[left],height[right]);
if(v > ret)
ret = v;
if(height[left] < height[right])
left++;
else
right--;
}
return ret;
}
};