每日一练:缺失的第一个正数

41. 缺失的第一个正数 - 力扣(LeetCode)

一、题目要求

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。

请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。

示例 1:

输入:nums = [1,2,0]
输出:3
解释:范围 [1,2] 中的数字都在数组中。

示例 2:

输入:nums = [3,4,-1,1]
输出:2
解释:1 在数组中,但 2 没有。

示例 3:

输入:nums = [7,8,9,11,12]
输出:1
解释:最小的正数 1 没有出现。

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

二、解法1 O(N)

        维护一个变量 j ,它存放的是下一个应该出现的正数,第一个出现的正数必然是1,所以 j 初始化为 1;

        对 nums 排序,然后遍历它,遇到非正数就跳过;

        如果下一个数不等于 j ,说明 j 就是缺失的正数;

        如果有重复元素,此次循环 j 不能自增1,直到下一个元素不是一样的;

        如果 i == nums.size(),说明 nums 中的元素是连续的,返回 j 即可,因为 j 等于下一个应该出现的正数。

class Solution {
public:
    int firstMissingPositive(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int i;
        int j = 1; //第一个出现的正数必然是1,所以 j 初始化为 1
        for (i = 0; i < nums.size(); i++) {
            if (nums[i] <= 0) // 非正数就跳过
                continue;
            if (nums[i] != j) // 不等于 j ,说明 j 就是缺失的正数
                return j;
            if (i < nums.size()-1 && nums[i] == nums[i + 1]) //重复元素,此次循环 j 不能自增1
                continue;
            j++;
        }
        return j; // nums 中的元素是连续的
    }
};

三、解法2-思路优化版

        解法2是解法1的思路优化版,仍然维护一个变量 j  ,但是它存放的是当前出现的连续正数的最大值;

        先排序;

        当出现 j 的下一位时,j 就自增1;

        最后返回 j+1 即可

class Solution {
public:
    int firstMissingPositive(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int j = 0;
        for (int i = 0; i < nums.size(); i++) {
            if(j+1 == nums[i])
                j++;
        }
        return j+1;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值