41. 缺失的第一个正数 - 力扣(LeetCode)
一、题目要求
给你一个未排序的整数数组 nums
,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n)
并且只使用常数级别额外空间的解决方案。
示例 1:
输入:nums = [1,2,0] 输出:3 解释:范围 [1,2] 中的数字都在数组中。
示例 2:
输入:nums = [3,4,-1,1] 输出:2 解释:1 在数组中,但 2 没有。
示例 3:
输入:nums = [7,8,9,11,12] 输出:1 解释:最小的正数 1 没有出现。
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
二、解法1 O(N)
维护一个变量 j ,它存放的是下一个应该出现的正数,第一个出现的正数必然是1,所以 j 初始化为 1;
对 nums 排序,然后遍历它,遇到非正数就跳过;
如果下一个数不等于 j ,说明 j 就是缺失的正数;
如果有重复元素,此次循环 j 不能自增1,直到下一个元素不是一样的;
如果 i == nums.size(),说明 nums 中的元素是连续的,返回 j 即可,因为 j 等于下一个应该出现的正数。
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
sort(nums.begin(), nums.end());
int i;
int j = 1; //第一个出现的正数必然是1,所以 j 初始化为 1
for (i = 0; i < nums.size(); i++) {
if (nums[i] <= 0) // 非正数就跳过
continue;
if (nums[i] != j) // 不等于 j ,说明 j 就是缺失的正数
return j;
if (i < nums.size()-1 && nums[i] == nums[i + 1]) //重复元素,此次循环 j 不能自增1
continue;
j++;
}
return j; // nums 中的元素是连续的
}
};
三、解法2-思路优化版
解法2是解法1的思路优化版,仍然维护一个变量 j ,但是它存放的是当前出现的连续正数的最大值;
先排序;
当出现 j 的下一位时,j 就自增1;
最后返回 j+1 即可
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
sort(nums.begin(), nums.end());
int j = 0;
for (int i = 0; i < nums.size(); i++) {
if(j+1 == nums[i])
j++;
}
return j+1;
}
};