每日一练:矩阵置零

73. 矩阵置零 - 力扣(LeetCode)

一、题目要求

给定一个 m x n 的矩阵,如果一个元素为 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

示例 1:

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]

示例 2:

输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

提示:

  • m == matrix.length
  • n == matrix[0].length
  • 1 <= m, n <= 200
  • -231 <= matrix[i][j] <= 231 - 1

进阶:

  • 一个直观的解决方案是使用  O(mn) 的额外空间,但这并不是一个好的解决方案。
  • 一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
  • 你能想出一个仅使用常量空间的解决方案吗?

摘自LeetCode

二、解法1-暴力破解  O(N^3) 执行时间一般,内存消耗大

        用一个 vv 保存matrix 的原始状态,然后遍历 vv;

        当遍历到0时,让它的横竖都变成0,即:横不变,竖从上到下置0;竖不变,横从左到右置0

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        vector<vector<int>> vv = matrix;
        for (int i = 0; i < matrix[0].size(); i++)
        {
            for (int j = 0; j < matrix.size(); j++)
            {
                if (vv[j][i] == 0)
                {
                    for (int x = 0; x < matrix[0].size(); x++)
                    {
                        matrix[j][x] = 0;
                    }
                    for (int y = 0; y < matrix.size(); y++)
                    {
                        matrix[y][i] = 0;
                    }
                }
            }
        }
    }
};

二、解法2-标记数组 O(M*N) 

        创建两个标记数组 row 和 col;

        遍历 matrix ,如果为0就记录它的行与列;

        最后根据row中的行号置0,col中的列号置0

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        vector<int> row; // 标记哪一行有0
        vector<int> col; // 标记哪一列有0
        for (int i = 0; i < matrix.size(); i++)
        {
            for (int j = 0; j < matrix[0].size(); j++)
            {
                if(matrix[i][j] == 0)
                {
                    row.emplace_back(i);
                    col.emplace_back(j);
                }
            }
        }
        for(const auto& r:row) // 行置0
        {
            for(int x = 0;x < matrix[0].size();x++)
            {
                matrix[r][x] = 0;
            }
        }
        for(const auto& c:col) // 列置0
        {
            for(int y = 0;y < matrix.size();y++)
            {
                matrix[y][c] = 0;
            }
        }
    }
};

三、解法3-两个标记变量 O(M*N) 内存消耗低为O(1)

        这是解法2的空间优化版,只用两个变量标记第一行、第一列是否要置0;

        然后后遍历数组,如果有0就使第一行、第一列对应的下标标记为0(第一行、第一列对应下标本来就需要为0);

        然后根据第一行、列的情况决定本行、列是否要置0;

        最后根据两个标记变量决定第一行、列是否要全置0。

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int first_row = 1; // 标记第一行是否原本有0
        int first_col = 1; // 标记第一列是否原本有0
        for (const auto& num : matrix[0]) {
            if (num == 0)
                first_row = 0;
        }
        for (const auto& arr : matrix) {
            if (arr[0] == 0)
                first_col = 0;
        }
        for (int i = 1; i < matrix.size(); i++) { // 第一行、第一列分别标记本列、本行是否有0
            for (int j = 1; j < matrix[0].size(); j++) {
                if (matrix[i][j] == 0) {
                    matrix[0][j] = 0;
                    matrix[i][0] = 0;
                }
            }
        }
        for (int i = 1; i < matrix[0].size(); i++) { // 列置0
            if (matrix[0][i] == 0) {
                for (int j = 1; j < matrix.size(); j++) {
                    matrix[j][i] = 0;
                }
            }
        }
        for (int j = 1; j < matrix.size(); j++) { // 行置0
            if (matrix[j][0] == 0) {
                for (int i = 1; i < matrix[0].size(); i++) {
                    matrix[j][i] = 0;
                }
            }
        }
        if (first_row == 0) // 根据标记处理第一行
            for (auto& num : matrix[0])
                num = 0;
        if (first_col == 0) // 根据标记处理第一列
            for (auto& num : matrix)
                num[0] = 0;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值