A.csp2020 方格取数
传统题 1000ms 256MiB
Description
设有n*m的方格图,每个方格中都有一个整数。 现有一只小熊,想从图的左上角走到右下角,每一步只能向上、向下或向右走一格,并且不能重复经过已经走过的方格,也不能走出边界。 小熊会取走所有经过的方格中的整数, 求它能取到的整数之和的最大值。
Format
Input
第1行两个正整数n,m。 接下来n行每行m个整数,依次代表每个方格中的整数。 1 ≤ n,m ≤ 1000。 方格中整数的绝对值不超过 1e4
Output
一个整数,表示小熊能取到的整数之和的最大值 结果可能为负数
Samples
输入数据 1
3 4
1 -1 3 2
2 -1 4 -1
-2 2 -3 -1
输出数据 1
9
Limitation
1s, 1024KiB for each test case.
一句话概括:数字矩阵加强版——DP+缀和优化*2
划分阶段:从第1列走到第m列。当然,每到新的一列,都可能有上下的移动
状态表示:v[i][j]:从(1,1)走到(i,j)所获最大数字和
状态转移:v[k][j]->v[i][j+1]
前缀和如图解
1.0版本
#include<bits/stdc++.h>
using namespace std;
int x,y,num[1005][1005];
long long pre[1005][1005],v[1005][1005];
void upd(long long &a,long long b)
{
a=max(a,b);
}
int main()
{
memset(v,-127,sizeof(v));
scanf("%d %d",&x,&y);
for(int i=1;i<=x;i++)
for(int j=1;j<=y;j++)
{
scanf("%d",&num[i][j]);
pre[i][j]=pre[i-1][j]+num[i][j];//j行前i个数之和
if(j==1)
v[i][j]=pre[i][j];
}
for(int i=2;i<=y;i++)//列数
for(int j=1;j<=x;j++)//行数
{
for(int k=1;k<=j;k++)//从上方转移
upd(v[j][i],v[k][i-1]+pre[j][i]-pre[k-1][i]);
for(int k=j+1;k<=x;k++)//从下方转移
upd(v[j][i],v[k][i-1]+pre[k][i]-pre[j-1][i]);
}
printf("%lld",v[x][y]);
return 0;
}
然鹅只有70分...
不明显三重for循环肯定是很难过滴
优化如下嘞——
整一个类似于前缀和的数组,省掉1.0中k这层循环
因为每次更新中,pre[j][i]不变,多了很多1-k,k-x最大值重复枚举
所以可以事先处理好
mx[0][k]:1-k中,v[k][i-1]-pre[k-1][i]的最大值;
mx[1][k]:k-x中,v[k][i-1]+pre[k][i]的最大值。
每新一列都要更新,因为依赖于上一列的v值
2.0版本(当当当!)
#include<bits/stdc++.h>
using namespace std;
int x,y,num[1005][1005],pre[1005][1005];
long long v[1005][1005],mx[2][1005];
void upd(long long &a,long long b)
{
a=max(a,b);
}
int main()
{
memset(v,-127,sizeof(v));
scanf("%d %d",&x,&y);
for(int i=1;i<=x;i++)
for(int j=1;j<=y;j++)
{
scanf("%d",&num[i][j]);
pre[i][j]=pre[i-1][j]+num[i][j];
if(j==1)
v[i][j]=pre[i][j];
}
for(int i=2;i<=y;i++)
{
mx[0][0]=-2e9=-2e9;
for(int k=1;k<=x;k++)
mx[0][k]=max(mx[0][k-1],v[k][i-1]-pre[k-1][i]);
for(int k=x;k>=1;k--)
mx[1][k]=max(mx[1][k+1],v[k][i-1]+pre[k][i]);
for(int j=1;j<=x;j++)
{
upd(v[j][i],mx[0][j]+pre[j][i]);
upd(v[j][i],mx[1][j]-pre[j-1][i]);
}
}
printf("%lld",v[x][y]);
return 0;
}