2023.8.15

A.csp2020 方格取数

传统题 1000ms 256MiB

Description

设有n*m的方格图,每个方格中都有一个整数。 现有一只小熊,想从图的左上角走到右下角,每一步只能向上向下向右走一格,并且不能重复经过已经走过的方格,也不能走出边界。 小熊会取走所有经过的方格中的整数, 求它能取到的整数之和的最大值。

Format

Input

第1行两个正整数n,m。 接下来n行每行m个整数,依次代表每个方格中的整数。 1 ≤ n,m ≤ 1000。 方格中整数的绝对值不超过 1e4

Output

一个整数,表示小熊能取到的整数之和的最大值 结果可能为负数

Samples

输入数据 1

3 4
1 -1 3 2
2 -1 4 -1
-2 2 -3 -1

输出数据 1

9

Limitation

1s, 1024KiB for each test case.

 一句话概括:数字矩阵加强版——DP+缀和优化*2

划分阶段:从第1列走到第m列。当然,每到新的一列,都可能有上下的移动

状态表示:v[i][j]:从(1,1)走到(i,j)所获最大数字和

状态转移:v[k][j]->v[i][j+1]

前缀和如图解

 

 1.0版本

#include<bits/stdc++.h>
using namespace std;
int x,y,num[1005][1005]; 
long long pre[1005][1005],v[1005][1005];
void upd(long long &a,long long b)
{
	a=max(a,b);
}
int main()
{
	memset(v,-127,sizeof(v));
	scanf("%d %d",&x,&y);
	for(int i=1;i<=x;i++)
		for(int j=1;j<=y;j++)
		{
			scanf("%d",&num[i][j]);
			pre[i][j]=pre[i-1][j]+num[i][j];//j行前i个数之和 
			if(j==1)
				v[i][j]=pre[i][j];
		}		
	for(int i=2;i<=y;i++)//列数 
		for(int j=1;j<=x;j++)//行数 
		{
			for(int k=1;k<=j;k++)//从上方转移 
				upd(v[j][i],v[k][i-1]+pre[j][i]-pre[k-1][i]);
			for(int k=j+1;k<=x;k++)//从下方转移 
				upd(v[j][i],v[k][i-1]+pre[k][i]-pre[j-1][i]);
		}
	printf("%lld",v[x][y]);
	return 0;	
}

然鹅只有70分...

明显三重for循环肯定是很难过滴

优化如下嘞——

整一个类似于前缀和的数组,省掉1.0中k这层循环

因为每次更新中,pre[j][i]不变,多了很多1-k,k-x最大值重复枚举

所以可以事先处理好

mx[0][k]:1-k中,v[k][i-1]-pre[k-1][i]的最大值;

mx[1][k]:k-x中,v[k][i-1]+pre[k][i]的最大值。

每新一列都要更新,因为依赖于上一列的v值

2.0版本(当当当!)

#include<bits/stdc++.h>
using namespace std;
int x,y,num[1005][1005],pre[1005][1005];
long long v[1005][1005],mx[2][1005];
void upd(long long &a,long long b)
{
	a=max(a,b);
}
int main()
{
	memset(v,-127,sizeof(v));
	scanf("%d %d",&x,&y);
	for(int i=1;i<=x;i++)
		for(int j=1;j<=y;j++)
		{
			scanf("%d",&num[i][j]);
			pre[i][j]=pre[i-1][j]+num[i][j];
			if(j==1)
				v[i][j]=pre[i][j];
		}		
	for(int i=2;i<=y;i++) 
	{
		mx[0][0]=-2e9=-2e9;
		for(int k=1;k<=x;k++)
			mx[0][k]=max(mx[0][k-1],v[k][i-1]-pre[k-1][i]);
		for(int k=x;k>=1;k--)
			mx[1][k]=max(mx[1][k+1],v[k][i-1]+pre[k][i]);
		for(int j=1;j<=x;j++)
		{
			upd(v[j][i],mx[0][j]+pre[j][i]);
			upd(v[j][i],mx[1][j]-pre[j-1][i]);
		}
	}
	printf("%lld",v[x][y]);
	return 0;	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值