自人工智能技术兴起至今,AI已经逐渐深入各行各业,掀起一场场飓风,颇有一种新工业革命的趋势。然而作为舞台的主角,AI却有一个难言之隐——黑箱问题。这也是现阶段阻碍AI发展和引起争议的重要因素。解决这个问题的重要途径就是对AI模型进行解释。本文就怎样解释一个AI模型?这个问题进行简单的探讨。
一. 解释AI模型的重要性
解释AI模型的重要性体现在它们能够为各个领域带来智能化、自动化、个性化以及高效的解决方案,从而推动社会和经济的进步和创新。同时也可以解决应用AI技术时可能的伦理、隐私和安全等问题,以确保其发展是可持续和负责任的。具体作用可以分为下面几点:
1.1 指导模型的调试和升级
解释一个模型的过程也是深入理解这个模型的过程。结果是,我们不仅知道模型能得出什么结果,还知道模型为什么得出这样的结论。这可以很好的指导工程师后续对模型结构重新改造与调试,或者对出现的问题快速的排查与修复。
1.2 指导数据的采集方向和特征工程
通过解释模型可以确定特征对模型的决策的影响程度大小,这可以引导特征的选择和提取过程,也可以简化模型和减少特征维度。另外,模型的解释能有助于发现数据存在的偏见和不平衡的问题。
1.3 增强人们对模型的认可度,指导人们做决策
模型解释提供了对模型决策过程和预测结果的可理解性,从而帮助人们更好地理解、评估和应用模型的输出,增强了人们对AI的信任。模型解释还能增强人们对模型的理解,帮助人们更好的发现模型的长处和短板,这可以指导人们使用模型时可以做到扬长避短。
1.4 降低管理成本。
模型解释可以使得模型的工作原理更加透明,从而明确各参与方的责任与义务。对于运行主体,这可以很好的降低模型维护和问题修复的成本,促进人机更有效的合作与沟通,提高整体效率。对于监管方,这可以帮助确保模型遵守法规和伦理准则,减少法律风险,也可以帮助明确出现问题后的责任方。
二. 怎样的解释是一个好的解释
一个好的模型解释应具备以下特点:
- 可理解性: 解释应该使用易于理解的语言和可视化方式,使非专业人士也能够理解模型的决策过程和预测结果。
- 一致性: 解释应与模型的行为保持一致。解释不能与模型的实际决策相矛盾,否则会引发混淆和不信任。
- 透明性: 解释应揭示模型的关键特征和权重,以及它们对决策的影响。这有助于使解释更加透明,避免“黑箱”效应。
- 可解释的特征重要性: 解释应该能够明确说明哪些特征对于模型的决策具有重要性,以及它们如何影响模型的输出。
- 局部和全局解释: 好的解释应该能够提供关于单个预测(局部解释)以及整体模型行为(全局解释)的信息,从而提供全面的认识。
- 可信度: 解释应该是可信的,有足够的证据支持。解释不能仅仅是猜测或假设,而应该基于模型的实际运作。
- 与应用场景相关: 解释应该与模型的应用场景相关,关注用户关心的问题,并提供与实际决策有关的信息。
- 交互性: 解释可以是交互性的,允许用户根据自己的兴趣深入探索模型的决策过程。
- 可验证性: 解释应该是可以验证的,可以通过实验或调整模型来验证解释的准确性。
- 教育性: 解释应该有教育价值,帮助用户理解AI模型如何工作,从而增强对AI技术的认识。
值得一提的是,模型解释是具有社会性的,不同的对象关注点不同,好的解释也是不同的;所以,可以根据解释对象的社会背景决定了解释的内容和性质。
三. 解释的常见方法
3.1 从数据和结果之间的关系出发
3.1.1 基于特征的方法(特征归因)
部分依赖图(PDP)
介绍
用于理解单个特征与模型预测之间的关系。它可以帮助我们理解特征如何影响模型的输出,以及在控制其他特征不变的情况下,特征的变化如何影响预测结果。
实现过程
- 选择特征: 首先,选择一个感兴趣的特征,该特征将成为横坐标。
- 样本生成: 在该特征的取值范围内,生成一系列的样本点,可以是均匀分布的或者按照某种采样策略选取的。
- 预测计算: 对于每个生成的样本点,保持其他特征不变,将这个特征的取值替换为样本点的值,然后用模型进行预测。记录每个样本点对应的模型预测结果。
- 绘制图形: 将样本点的取值与其对应的模型预测结果进行绘制,生成部分依赖图。通常是在一个坐标轴上,横坐标表示特征的取值,纵坐标表示模型的预测结果。
作用
部分依赖图可以回答以下问题:
- 特征与模型预测之间的关系是线性的还是非线性的?
- 特征的取值对模型的预测结果有何影响?
- 特征的变化范围对模型的预测结果有何影响?
优缺点
优点:计算简单,解释清楚,容易实现。
缺点:一次解释的特征最大数为2,对多特征的模型不友好;因为假定针对其计算了部分依赖性的特征与其他特征不相关,所以不能捕捉特征之间的交互作用。质效应可能被隐藏,因为 PD 曲线仅显⽰平均边际效应。
个体条件期望(ICE)
介绍
用于理解模型在每个个体样本上对于某个特定特征的影响,从而揭示模型的预测是如何随着该特征的变化而变化的。ICE 图将实例对每个特征的预测依赖关系可视化,每个实例分别产⽣⼀条线。PDP 是 ICE 图的线的平均值。
实现过程
- 选择特征和样本: 首先,选择一个感兴趣的特征,以及一些样本,这些样本将用于在特征的取值范围内进行变化。
- 特征变化和预测: 对于每个样本,在保持其他特征不变的情况下,逐步改变选择的特征的取值。然后,用模型对该样本进行预测,记录每个取值对应的模型预测结果。
- 绘制图形: 将每个样本的特征取值与其对应的模型预测结果绘制在一个图中。每个个体的变化轨迹形成了一个线条,每个线条代表一个样本。多个线条的叠加揭示了特征取值与模型预测之间的关系。
作用
ICE图可以回答以下问题:
- 在个体样本水平上,特定特征的变化如何影响模型的预测?
- 特定特征的影响在不同样本之间是否存在差异?
优缺点
优点:与部分依赖图相⽐,个体条件期望曲线更直观,且ICE 曲线可以揭示异质关系。
缺点:ICE 曲线只能有意义地显示一个特征,因为两个特征将需要绘制多个重叠曲⾯,你将在图中看不到任何内容。ICE 曲线与 PDP ⾯临相同的问题——不能捕捉特征之间的交互作用。
累积局部效应图(ALE)
介绍
结合了个体条件期望(ICE)图的思想和部分依赖图(PDP)的思想,通过展示多个个体的变化轨迹来更深入地理解特征的影响,从而揭示模型中某个特定特征对预测的累积影响。只要用于解决模型的特征强相关时,部分依赖图不可信的问题。ALE 图通过基于特征的条件分布来计算预测差异⽽不是平均值,从⽽解决了这⼀问题。
实现过程
- 选择特征和样本: 首先,选择一个感兴趣的特征,以及一些样本,用于在特征的取值范围内进行变化。
- 特征变化和预测: 对于每个样本,在保持其他特征不变的情况下,逐步改变选择的特征的取值。然后,用模型对该样本进行预测,记录每个取值对应的模型预测结果。
- 计算累积效应: 对于每个样本,计算从该样本开始,到当前特征取值时的预测结果累积效应。这可以理解为在特征变化过程中,预测结果的累积变化。
- 绘制图形: 将每个样本的特征取值与其对应的累积效应绘制在一个图中。每个样本的累积效应曲线形成一个线条,多个线条的叠加展示了特征取值对预测结果的累积影响。
作用
ALE图可以回答以下问题:
- 在特定特征上,从一个初始点到另一个特定取值,模型的预测结果是如何累积变化的?
- 不同样本之间,特定特征的累积影响是否存在差异?
优缺点
优点:ALE 图是无偏的,这意味着在特征相关时它们仍然有效。解释更清楚,2D ALE 绘图仅显示交互作用:如果两个特征不交互,则图不显⽰任何内容。
缺点:特征的间隔数不好控制。设置太⼩,则 ALE 图可能不太准确;设置太⼤,计算难度增加,且曲线可能会变得不稳定。
特征交互 H 统计量
介绍
用于评估特征之间交互关系的统计量。它可以用来检测在监督学习问题中,哪些特征对于模型的预测结果具有显著的交互影响。
实现过程
- 数据准备: 准备训练数据集,包括特征和对应的目标变量。
- 特征交互: 对于每一对特征,将它们进行交叉组合,生成新的特征。例如,对于特征 A 和 B,生成 A * B。
- 建模: 使用交叉特征和原始特征作为输入,训练一个模型(通常是线性模型),如线性回归。
- 计算 H 统计量: 对于每个特征交互,计算一个 H 统计量,用于衡量该特征交互对于模型预测的影响。H 统计量的计算通常涉及模型的性能提升(比如 R-squared)和特征的预测误差。
- 判定显著性: 根据 H 统计量的值,进行假设检验,判断特定的特征交互是否在统计上是显著的。
作用
H 统计量的解释可以帮助我们回答以下问题:
- 哪些特征之间的交互对于模型的预测具有显著的影响?
- 特定特征交互是否值得被纳入模型,以提升模型的性能?
优缺点
优点:可以揭示特征交互影响。
缺点:计算成本较高。对于非线性问题,H 统计量可能无法捕捉到所有的交互关系。一般只考虑两个特征之间的交互,对于多个特征之间的交互无能为力。判定特征交互是否显著的过程可能受到样本量、噪音等因素的影响,需要谨慎处理。
置换特征重要性(PFI)
介绍
通过对特征进行随机排列(置换)来测量特征对模型性能的影响,从而判断特征的相对重要性。
实现过程
- 原始模型评估: 使用原始数据集训练一个机器学习模型,记录模型在测试集上的性能指标,如准确率、F1 分数等。
- 特征置换: 对于要评估的特征,逐个进行随机置换,即将特征值打乱,保持其他特征不变。然后使用置换后的数据集对模型进行预测,记录模型在测试集上的性能指标。
- 计算特征重要性: 对于每个特征,计算原始模型评估指标与置换后模型评估指标之间的差异。差异越大,说明该特征在模型中越重要。
- 排序特征: 根据特征重要性的差异,对特征进行排序,得出特征的重要性排名。
作用
置换特征重要性的解释可以回答以下问题:
- 在模型中,哪些特征对于模型的预测性能具有更大的影响?
- 特定特征的重要性如何相对于其他特征?
优缺点
优点:不依赖于具体的模型。可以直观的解释。可以帮助避免多重共线性对特征重要性评估的影响。
缺点:计算成本较高,尤其在特征较多时。可能会受到随机性和数据集大小的影响。对于高基线性能的模型,特征置换可能会低估某些特征的重要性
SHAP
介绍
SHAP是基于博弈论中的 Shapley 值概念,旨在提供关于每个特征对于预测结果的贡献的解释。SHAP 的基本思想是将一个特征的值与一个虚拟的“基准值”进行比较,然后计算该特征对于模型预测的影响。SHAP 值可以看作是特征对预测结果的“责任”,将模型预测与某个基准值之间的差异分解为各个特征对于这种差异的贡献。
实现过程
- 选择基准值: 选择一个用作基准的参考点,可以是整个数据集的平均值或其他有意义的值。
- 特征影响计算: 对于特定样本,计算每个特征对于模型预测结果的影响,即 SHAP 值。计算 SHAP 值的方法保证了各个特征的贡献之和等于预测结果与基准值的差异。
- 解释结果: SHAP 值的正负表示特征对于预测结果的正向或负向影响,数值的大小表示影响的程度。通过对每个特征的 SHAP 值进行分析,可以理解各个特征如何共同影响了预测结果。
作用
SHAP 可以解释以下问题:
- 每个特征对于模型预测结果的影响是如何的?
- 特定样本的预测结果是如何被解释的?
优缺点
优点: SHAP 值满足 Shapley 值的公平性原则,确保了解释的一致性和合理性。
缺点:计算成本较高,理论复杂性大。
3.1.2 基于样本的方法(样本归因)
反事实解释
介绍
基于对特定样本进行假设性操作,以便理解如果某些特征或条件发生变化,模型的预测结果将如何改变。这种方法能够帮助我们理解模型对于不同情境下的响应方式,以及对模型决策的可信度和稳定性进行评估。
实现过程
- 特征扰动: 改变样本的一个或多个特征,以模拟不同的情境。这可以是增加、减少或改变特征值,甚至是交换特征值。
- 重新预测: 使用改变后的样本重新对模型进行预测,观察模型预测结果的变化。
- 分析影响: 分析改变后的预测结果,了解特征扰动对模型预测的影响。
优缺点
优点:直观,不依赖于模型的具体类型。
缺点:计算成本高,效果可能会受到特定样本的选择和扰动方式的影响。
对抗样本解释
介绍
经过特定修改的输入数据,这种修改是有意设计的,旨在欺骗机器学习模型。对抗样本的引入是为了探索模型的脆弱性和漏洞。
实现过程
- 选择样本: 选择一个原始样本,即希望生成对抗样本的基准。
- 添加扰动: 对基准样本进行微小的修改,通常是在原始样本的基础上添加一些扰动,这些扰动通常是不易察觉的。
- 生成对抗样本: 将添加了扰动的样本输入到模型中,观察模型的预测结果是否发生错误。
- 安全性评估: 对抗样本可以用于评估模型的鲁棒性和安全性,揭示模型对于微小变化的敏感性。
- 模型可解释性: 通过分析对抗样本,可以帮助理解模型的预测决策、脆弱点和不足之处。
原型与批评解释(PACE)
介绍
PACE 方法的基本思想是将原型和批评两种解释方法相结合,以便更好地解释模型的预测结果。
实现过程
- 原型解释: 首先,使用原型方法构建出代表性的“原型样本”,这些样本尽可能覆盖不同类别、特征和决策情况。
- 批评解释: 对于特定的预测结果,通过计算批评值,即衡量模型对于该结果的置信度或不确定性。
- 结合解释: 将原型解释和批评解释相结合,以提供关于模型预测的更全面信息。通过将原型样本与具体预测结果的相似性和置信度联系起来,可以更好地理解模型预测的原因。
优缺点
优点:可解释性强。可以覆盖不同的情况和特征,增强了解释的多样性。
缺点:在大规模数据集上计算陈本高,解释效果受到模型数据集的影响而不同。
有影响力的实例解释
介绍
通过分析和展示那些对于模型的预测结果产生重大影响的样本或实例,以便更好地理解模型的决策过程。
实现过程
- 识别有影响力的实例: 首先,需要确定哪些样本对于模型的预测具有较大的影响力。这可以通过计算每个样本对于模型预测结果的贡献或影响度来实现。
- 展示关键实例: 一旦确定了有影响力的实例,就可以将它们展示给用户或相关利益方。这通常包括显示相关样本的特征值、模型的预测结果以及模型对于该样本的置信度等信息。
- 解释模型决策: 通过分析有影响力的实例,可以帮助用户理解为什么模型会对这些特定样本做出某种决策。这有助于提供关于模型行为的可解释性。
优缺点
优点:直观,可理解性高。对特别问题有针对性。
缺点:对模型无法做到全面的解释,解释的效果严重受到样本选择的影响。
3.2 从模型结构出发
3.2.1 选择结构简单⽽被认为是可解释的机器学习模型
3.2.2 模型内部结构解释
从模型的内部结构对模型进行解释通常需要深入了解模型的体系结构和参数。这种解释方法通常适用于可解释性强的模型,如线性回归、决策树、逻辑回归等。以下是一些基本步骤和方法:
- 模型可视化: 尝试将模型的结构可视化出来。例如,对于决策树模型,你可以绘制出树的结构,以查看每个节点的分裂条件和叶子节点的决策。
- 权重和系数分析: 对于线性模型(如线性回归、逻辑回归),可以分析每个特征的权重或系数。正系数表示增加特征值将增加预测结果,负系数表示减小特征值将增加预测结果。
- 神经网络层次分析: 对于深度学习模型,可以通过分析每个神经网络层的输出来了解模型的内部工作。一些可视化工具和技术允许你查看神经网络中的每一层的激活。
- 梯度、激活和过滤可视化: 对于深度学习模型,可以通过可视化模型梯度、神经元激活和滤波器响应来了解模型对于输入数据的敏感性。
3.2.3 全局代理模型
介绍
通过构建一个可解释的、简单的替代模型来近似原始模型的行为。全局代理模型可以是线性模型、决策树、逻辑回归等容易理解和解释的模型。
实现过程
- 准备数据: 准备原始模型的训练数据,包括特征和目标变量。
- 建立全局代理模型: 使用容易解释的模型(如线性模型或决策树)来训练一个全局代理模型,使用原始模型的预测结果作为目标变量。
- 特征选择与解释: 根据全局代理模型的系数、特征重要性等信息,解释哪些特征对于模型的预测结果具有较大影响。
- 验证和比较: 通过对测试集进行预测,并与原始模型的预测结果进行比较,验证全局代理模型是否能够有效地近似原始模型的行为。
作用
全局代理模型的解释可以回答以下问题:
- 哪些特征对于模型的预测结果影响较大?
- 哪些特征的影响是线性的,哪些是非线性的?
优缺点
优点:
可解释性: 全局代理模型通常是易于解释的模型,能够提供对模型预测的可解释性。
模型无关性: 全局代理模型不依赖于原始模型的类型,适用于多种机器学习算法。
解释特征重要性: 全局代理模型可以帮助解释特征对模型预测的影响程度。
缺点:
近似性: 全局代理模型是对原始模型的近似,可能无法完全捕捉原始模型的复杂性。
信息损失: 全局代理模型可能会损失部分信息,特别是对于非线性模型的情况。
特征交互: 全局代理模型可能无法捕捉特征之间的复杂交互关系。
过拟合: 在建立全局代理模型时,仍然可能出现过拟合问题。
3.2.4 局部代理 (LIME)
介绍
用于解释机器学习模型在单个样本上的预测结果的方法。LIME 的基本思想是通过在局部范围内构建一个简化的模型来近似解释原始模型的预测结果。
实现过程
- 选择样本: 选择一个感兴趣的样本,对于这个样本我们希望解释模型的预测结果。
- 特征扰动: 在样本周围添加随机噪声或扰动,产生一组类似样本。
- 建立代理模型: 使用这些扰动样本和原始模型的预测结果来训练一个解释性较强的代理模型,通常是线性模型或决策树。
- 计算特征影响: 解释代理模型中特征的系数或特征重要性,这些可以用来理解在局部范围内每个特征对于模型预测的影响。
- 解释结果: 解释代理模型的结果,显示哪些特征对于原始模型在该样本上的预测产生了什么影响。
作用
LIME 可以解释以下问题:
- 在单个样本上,哪些特征对于模型的预测结果具有重要影响?
- 特定样本的模型决策是如何被解释的?
优缺点
优点:
模型无关性: LIME 不依赖于原始模型的类型,适用于各种机器学习算法。
局部解释: LIME 提供了在单个样本层面上的解释,使得解释更加针对性和可理解。
解释性强: 通过使用解释性较强的代理模型,LIME 能够提供易于理解的解释。
缺点:
近似性: LIME 是对原始模型的近似,可能无法完全捕捉模型的复杂性。
计算成本: LIME 需要在局部范围内构建代理模型,可能会涉及多次模型训练,计算成本较高。
样本选择: LIME 对于样本选择敏感,不同样本选择可能会导致不同的解释结果。