在现代的生态、环境以及地学研究中,变量和变量间的因果关系推断占据了非常重要的地位。在实践中,变量间的因果关系研究往往求助于昂贵的实验,但所得结果又经常与天然环境中的实际因果联系相差甚远。统计学方法是研究天然环境中变量间关系的好方法,但常见的统计学方法往往回答的是变量间的相关关系。相关关系是通往因果关系的第一步,但决不是其最终的目的。贝叶斯网络是一种结合图论与统计学理论提出的新型模型。
贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。自贝叶斯网络模型在上个世纪80年代被正式提出以来,其已经被运用于生态、环境、医学、社会学等各方面的研究,取得了丰硕的成果;但是,贝叶斯网络模型理论较为复杂,体系庞大,形式复杂多样,很难被初学者掌握。本次以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了贝叶斯网络结构学习,参数学习以及因果推断等全过程,对贝叶斯网络有较全面的了解,并能够用于科研和工作实践中。
【内容介绍】:
专题一:R语言实现Bayesian Network分析的基本流程
R语言的数据类型与基本操作