C++ AVL树

目录

一、AVL树的概念

二、AVL树节点的定义

三、AVL树的插入

四、AVL树的旋转

1. 新节点插入较高左子树的左侧:右单旋

2. 新节点插入较高右子树的右侧:左单旋

3. 新节点插入较高左子树的右侧:先左单旋再右单旋

4. 新节点插入较高右子树的左侧:先右单旋再左单旋

五、AVL树的验证

六、AVL的性能


一、AVL树的概念

        二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
        一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

(1)它的左右子树都是AVL树
(2)左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
$O(log_2 n)$,搜索时间复杂度O($log_2 n$)。

二、AVL树节点的定义

template<class K,class V>
	struct AVLTreeNode
	{
		typedef AVLTreeNode<K, V> Node;

        //构造函数
	    AVLTreeNode(const pair<K,V>& kv)
		    :_left(nullptr)
		    ,_right(nullptr)
		    ,_parent(nullptr)
		    ,_kv(kv)
		    ,_bf(0)
	    {}    

		//指针连接父子
		Node* _left;
		Node* _right;
		Node* _parent;
		//平衡因子
		int _bf;
		//pair用来存储key和value
		pair<K, V> _kv;
	};

三、AVL树的插入

        AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

(1)按照二叉搜索树的方式插入新节点

(2)调节节点的平衡因子

bool insert(const pair<K,V>& kv)
		{
			// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
			if (_root==nullptr)
			{
				_root = new Node(kv);
				return true;
			}
			Node* cur = _root;
			Node* parent =cur->_parent;
			//找到要插入的位置
			while (cur!=nullptr)
			{
				if (cur->_kv.first<kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_kv.first>kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				//找到了时候cur==nullptr,跳出了循环
				else
				{
					return false;
				}
			}
			Node* newnode = new Node(kv);
			cur = newnode;
			//cur是连接到父亲的左边还是右边呢?
			if (kv.first>parent->_kv.first)
			{
				parent->_right = cur;
				cur->_parent = parent;
			}
			else if (kv.first<parent->_kv.first)
			{
				parent->_left = cur;
				cur->_parent = parent;
			}


			// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
			//更新AVL树的平衡因子
			/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
				的平衡因子分为三种情况: - 1,0, 1, 分以下两种情况:*/

			while ()
			{
				//1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子 - 1即可
				if (parent->_right==cur)
				{
					parent->_bf++;
				}
				//2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子 + 1即可
				else if (parent->_left==cur)
				{
					parent->_bf--;
				}

				//对bf进行讨论,不符合规定的需要旋转调整
				/*此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
				 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
				 成0,此时满足AVL树的性质,插入成功
			   	 2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
				 新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
			     3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/


				//1.当parent的bf==0时,不需要再向上修改bf了,直接退出循环
				if (parent->_bf==0)
				{
					break;
				}
				else if (parent->_bf==1||parent->_bf==-1)
				{
					cur = parent;
					parent = parent->_parent;
				}
				else if (parent->_bf==2||parent->_bf==-2)
				{
					//分四种情况讨论
					//1.新节点插入在较高左子树的左侧---右单旋
					if (parent->_bf==-2&&cur->_bf==-1)
					{
						_RotateR(parent);
					}
					//2.新节点插入在较高右子树的右侧---左单旋
					else if (parent->_bf==2&&cur->_bf==1)
					{
						_RotateL(parent);
					}
					//3.新节点插入在较高左子树的右侧---先左单旋再右单旋
					else if (parent->_bf==-2&&cur->_bf==1)
					{
						_RotateLR(parent);
					}
					//4.新节点插入在较高右子树的左侧---先右单旋再左单旋
					else if (parent->_bf==2&&cur->_bf==-1)
					{
						_RotateRL(parent);
					}
				}

			}
			return true; 
		}

四、AVL树的旋转

        如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧:右单旋

//右单旋
		void _RotateR(Node* parent)
		{
			//记录两个重要节点
			Node* subL = parent->_left;
			Node* subLR = subL->_right;

			//连接
			parent->_left = subLR;
			//如果subL的右边为空,空不能解引用,需要注意一下
			if (subLR->_right!=nullptr)
			{
				subLR->_parent= parent;
			}
			subL->_right = parent;
			//处理根的问题
			Node* grandparent = parent->_parent;
			
			parent->_parent = subL;
			subL->_parent = grandparent;
			//如果原本parent是根,则让_root=subL
			if (parent==_root)
			{
				_root = subL;
				subL->_parent = nullpptr;
			}
			//如果parent是子树,则连接subL和grandparent
			else
			{
				if (grandparent->_right==parent)
				{
					grandparent->_right = subL;
				}
				else if (grandparent->_left==parent)
				{
					grandparent->_left = subL;
				}
			}

			//一旦走了右旋,他的bf就平衡了
			parent->_bf=subL->_bf=0
		}

2. 新节点插入较高右子树的右侧:左单旋

//左单旋
		void _RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;

			parent->_right = subRL;
			subR->_left = parent;

			Node* grandparent = parent->_parent;
			parent->_parent = subR;
			if (subRL!=nullptr)
			{
				subRL->_parent = parent;
			}
			//处理根的问题
			if (parent==_root)
			{
				_root = subR;
				subR->_parent = nullptr;
			}
			else
			{
				if (parent==grandparent->_right)
				{
					grandparent->_right = subR;
				}
				else if (parent==grandparent->_left)
				{
					grandparent->_left = subR;
				}
			}
			subR->_bf = parent->_bf = 0;
		}

3. 新节点插入较高左子树的右侧:先左单旋再右单旋

void _RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			//在插入数据的位置  记录平衡因子bf
			int bf = subLR->_bf;

			//对subL进行左单旋
			_RotateL(subL);
			//对subLR进行右单旋
			_RotateR(parent);

			//更新平衡因子
			//如果subLR的右边增加
			if (bf==1)
			{
				subL->_bf = -1;
				subLR->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf==-1)//subLR的左子树增加
			{
				parent->_bf = 1;
				subLR->_bf = 0;
				subL->_bf = 0;
			}
			else if (bf==0)//subLR本身就是增加的节点
			{
				parent->_bf = subL->_bf = subLR->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}

4. 新节点插入较高右子树的左侧:先右单旋再左单旋

void _RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			int bf = subRL->_bf;

			_RotateR(subR);
			_RotateL(parent);

			if (bf==0)
			{
                parent->_bf = subL->_bf = subLR->_bf = 0;
			}
			else if (bf==1)
			{
				parent->_bf = -1;
				subR->_bf = 0;
				subRL->_bf=0
			}
			else if (bf==-1)
			{
				parent->_bf = 0;
				subR->_bf = 1;
				subRL->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}

总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:
(1)pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋

(2)pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

五、AVL树的验证

        AVL树是在二叉搜索树的基础上加上了平衡性的限制,因此要验证AVL树,可以分为两步:

(1)验证其为二叉搜索树

        如果中序遍历可以得到一个有序的序列,就说明其为二叉搜索树

(2)验证其为平衡树

        平衡因子是否合理

//是否为平衡树
		bool isBalance()
		{
			return _isBalance(_root);
		}
        bool _isBalance(Node* root)
		{
			if (root == nullptr)
			{
				return true;
			}
			int leftHeight = _Height(root->_left);
			int rightHeight = _Height(root->_right);
			//再检查一下平衡因子有没有错误
			if (rightHeight - leftHeight != root->_bf)
			{
				cout << root->_kv.first << "平衡因子异常" << endl;
				return false;
			}

			return abs(leftHeight - rightHeight) < 2
				&& _isBalance(root->_left)
				&& _isBalance(root->_right);
		}

//求树的高度
		int _Height(Node* root)
		{
			if (root==0)
			{
				return 0;
			}
			int leftHeight = _Height(root->_left);
			int rightHeight = _Height(root->_right);
			return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
		}

六、AVL的性能

        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

        因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值