模拟退火算法(带你了解原理 实践)

本文详细介绍了模拟退火算法的原理,包括其物理退火过程的启发和在优化问题中的应用。还提供了Python实现示例,并探讨了如何优化算法性能,特别是选择合适初始温度的方法。
摘要由CSDN通过智能技术生成

一、引言

模拟退火算法(Simulated Annealing, SA)是一种受物理退火过程启发而开发的优化算法,用于寻找给定问题的近似最优解。该算法起源于固体退火过程,与局部搜索算法和全局搜索算法相结合,能够在多项式时间内给出一个近似最优解。本文将详细介绍模拟退火算法的原理、应用以及优化方法。

二、模拟退火算法原理

模拟退火算法的基本思想是通过模拟物理退火过程,将问题的求解过程转化为寻找能量最小化的过程。

在物理退火过程中,固体从高温开始逐渐降低温度,达到稳定状态。模拟退火算法借鉴这一思想,通过随机搜索和概率接受新解的方式,避免陷入局部最优解,从而找到全局最优解。

算法步骤如下:

1初始化

设定初始温度T0、终止温度Tf、降温系数alpha、当前解S、最优解S_best等参数。
在当前温度下,对当前解S进行随机扰动,生成新解S_new。

2 计算新解S_new的目标函数值

并与当前解S的目标函数值进行比较。若新解更优,则接受新解S_new作为当前解;否则,根据概率P(ΔE, T) = exp(-ΔE/T)接受新解,其中ΔE为新解与当前解的差值。

3 判断是否达到终止条件

(如达到终止温度Tf或连续若干次迭代未找到更优解)。若满足条件,则输出最优解S_best;否则,降温并重复步骤2-4。

三、python事例

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值