一、引言
模拟退火算法(Simulated Annealing, SA)是一种受物理退火过程启发而开发的优化算法,用于寻找给定问题的近似最优解。该算法起源于固体退火过程,与局部搜索算法和全局搜索算法相结合,能够在多项式时间内给出一个近似最优解。本文将详细介绍模拟退火算法的原理、应用以及优化方法。
二、模拟退火算法原理
模拟退火算法的基本思想是通过模拟物理退火过程,将问题的求解过程转化为寻找能量最小化的过程。
在物理退火过程中,固体从高温开始逐渐降低温度,达到稳定状态。模拟退火算法借鉴这一思想,通过随机搜索和概率接受新解的方式,避免陷入局部最优解,从而找到全局最优解。
算法步骤如下:
1初始化
设定初始温度T0、终止温度Tf、降温系数alpha、当前解S、最优解S_best等参数。
在当前温度下,对当前解S进行随机扰动,生成新解S_new。
2 计算新解S_new的目标函数值
并与当前解S的目标函数值进行比较。若新解更优,则接受新解S_new作为当前解;否则,根据概率P(ΔE, T) = exp(-ΔE/T)接受新解,其中ΔE为新解与当前解的差值。
3 判断是否达到终止条件
(如达到终止温度Tf或连续若干次迭代未找到更优解)。若满足条件,则输出最优解S_best;否则,降温并重复步骤2-4。