【斗破苍穹】逆天血脉,厄难毒体潜在风险巨大,碧蛇三花瞳最恐怖

Hello,小伙伴们,我是小郑继续为大家深度解析斗破苍穹。

 

《斗破苍穹》的故事中,除了萧炎之外,还有不少实力强悍的少年天草,他们无一例外都是天赋了得,除了有自身的努力外,他们的的成功还有很大一部分基于血脉,而这也诞生了不少特殊的修炼体质

 

这里面有三大血脉尤为特别,拥有的人修炼远比普通人轻松许多,不过这三大血脉也有所限制而后不同,接下来就随小郑一起来看一下吧

①斗帝血脉

斗帝血脉可以说是被动修炼神器,即使没怎么修炼,与生俱来的天赋也能让其实力飞涨

 

根据原著小说设定,每一位斗帝的出现,都会让家族走向强大,而且与斗帝关系越亲近的人受到的加持会更加明显,修炼速度和最终成就也会更加惊人,比如斗气大陆神秘的远古八大种族,便都是斗帝的后代,虽然时间已经很久远,但依旧有不少族人受到斗帝血脉的影响,修炼速度惊人

 

而同样也体现在萧家身上,随着萧炎成为斗帝,萧家族人也因此不同程度实力飞涨,萧炎的父亲和兄长,直接成为斗圣强者,要知道他们在此之前并没有展现特别的修炼天赋,而萧炎的女儿则更加离谱,12岁就已经成为八星斗圣,而这一切都因为斗帝血脉

②厄难毒体

相比起斗帝血脉这种福荫子孙的血脉,厄难毒体的争议性就比较强

 

不能否认,厄难毒体对于实力修炼和加成确实很明显,要不然小医仙也不会短短几年就提升到四星斗宗,要知道小医仙与萧炎分离的时候实力比萧炎还要低,在这个过程中萧炎有有药老这种大师知道,还有异火和强大斗技的加持,也仅仅到了斗王巅峰

由此不难看出厄难毒体对修炼的加持有恐怖

 

当然厄难毒体也不是无所不能,存在十分明显的副作用,随着修炼者实力提升, 普通毒药对其作用可以说是微乎其微,如果想要提升实力,那么就需要找到传说级别的毒草,这种级别的毒草想要获得需要天时地利人和,除非有逆天机缘,不然想要获得还真的没有那么容易

 

如果只是难以获得顶级毒草,后期提升实力困难,厄难毒体还不至于争议那么大,因为随着修炼者提升,服用的毒素开始积累在身体中,很容易对厄难毒体拥有者身边的人造成伤害,毕竟不是所有人都能抵抗如此恐怖的毒素攻击

 

不过小医仙是幸运的,因为有萧炎的帮助,小医仙在利用厄难毒体提升实力的时候,还能控制毒体。因此虽然厄难毒体稀有,且能让修炼者快速提升实力,但真正成为强者的厄难毒体拥有者并不多

③碧蛇三花瞳

 

同样都是与生俱来的血脉,碧蛇三花瞳可比厄难毒体好了不少,拥有的人可以说只有好处没有坏处

 

碧蛇三花瞳只有出现在人类和蛇人的后代中,因为人类和蛇人结合本来就少,后代存活概率也低,因此碧蛇三花瞳十分罕见,因此每一位拥有者都注定会有不凡的经历

 

碧蛇三花瞳拥有者可以克制所有蛇形的魔兽,发动技能之后能够让蛇形魔兽成为傀儡,而随着碧蛇三花瞳拥有者实力提升,能够控制的魔兽实力也会不断提升,越级控制根本不是问题,关于这一点在小说中也有所体现

 

拥有碧蛇三花瞳的青鳞在进入九幽地冥蟒地盘后,不仅没有遭遇危险,甚至凭借碧蛇三花瞳在九幽地冥蟒地盘横着走,成功收服斗尊级别的九幽地冥蟒,让其成为自己傀儡

 

相比起血缘继承斗帝血脉和限制颇多的厄难毒体,毫无疑问碧蛇三花瞳是限制最少,对于修炼者本身来说最为轻松的,唯一的困难大概就是已成为那位蛇人与人类后代的幸运儿。

好了,本期就聊到这里,长按点赞有惊喜!创作构思实属不易,如果您也喜欢《斗破苍穹》系列的话,还请一键三连,点赞关注表示支持,小郑万分感谢!我们下期再见!

想了解更多精彩内容、花絮,快来关注我吧!【文/郑尔巴金】

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值