「斗罗二」燃情时刻,两个十万年魂环,魂兽吓瘫,全场惊呆

《斗罗大陆2绝世唐门》第21集,霍雨浩以十万年魂环压倒对手,震惊全场。戴华斌嫉妒心作祟,但霍雨浩的实力和智慧让人印象深刻。剧情渐入佳境,期待后续发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hello,小伙伴们,我是小郑继续为大家深度解析国漫资讯。

深度爆料,《斗罗大陆2绝世唐门》21集最新剧情,霍雨浩作为班长,第一个参加魂兽升学考核,他选了个百年层次的风灵狼作为对手。

aae08e82e8059afb180f1edc961bde50.jpeg

霍雨浩开启了两个十万年魂环,展现出十万年魂兽的威压,直接吓晕了风狼,这一举动不仅让所有参加考核的学生目瞪口呆,也惹怒了兽王弓长龙,他是史莱克学院斗兽场负责人,人称弓老。作为92级封号斗罗,对魂兽的了解,可以说是史莱克学院之最。此行升学考核,他就是主考官。

c0b73d7f80bdcd0008a7aa98bb26ea0b.jpeg


127df916277f6d301e75c41d3a9a8313.jpeg

戴华斌、朱露等人就想看到雨浩出糗,然而霍雨浩的出色表现让他们失望了。戴华斌整个人都不好了,他每一次都输给霍雨浩,这一次还是磕头认错。在这个过程中,我们看到了霍雨浩的实力和智慧,也看到了弓老的性格和实力。当然,我们也看到了戴华斌等人的嫉妒和不满。

7340e0391eabf2eb1436491166007294.jpeg


2f88407f13155243132e7a9a3000e6cf.jpeg

目前《斗罗大陆》的剧情已经非常精彩了,越来越期待霍雨浩和戴华斌当众给霍雨浩下跪的场面快快上演!好了,本期就先写到这里,构思实属不易,如果你也喜欢斗罗大陆,还请点赞关注,支持一下,小郑才有动力继续肝创作,我们下期再见!

想了解更多精彩内容、花絮,快来关注我吧!【文/郑尔巴金】


数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值