几何对象的包含关系
判断线段、折线、多边形是否在矩形中
- 矩形是凸集,只需判断所有顶点是否都在矩形内。
- 判断条件:
对于每个顶点 P(x, y),满足:
rectMinX ≤ x ≤ rectMaxX
rectMinY ≤ y ≤ rectMaxY
判断矩形是否在矩形中
- 比较两个矩形的边界。
- 判断条件:
rect1.minX ≥ rect2.minX && rect1.maxX ≤ rect2.maxX
rect1.minY ≥ rect2.minY && rect1.maxY ≤ rect2.maxY
判断圆是否在矩形中
- 圆心必须在矩形内,且圆的半径小于或等于圆心到矩形四边的最小距离。
- 判断条件:
rectMinX ≤ centerX ≤ rectMaxX
rectMinY ≤ centerY ≤ rectMaxY
radius ≤ min(centerX - rectMinX, rectMaxX - centerX, centerY - rectMinY, rectMaxY - centerY)
判断线段是否在多边形中
- 必要条件1:线段的两个端点都在多边形内。
- 必要条件2:线段与多边形的所有边都不相交(除端点外)。
- 算法步骤:
- 判断线段端点是否在多边形内。
- 判断线段是否与多边形的边内交。
- 判断线段与多边形的交点是否满足中点条件。
判断多边形是否在多边形中
- 判断多边形的每条边是否都在另一个多边形内。
- 复杂度:O(m×n),其中 m 和 n 分别是两个多边形的顶点数。
判断矩形是否在多边形中
- 将矩形转化为多边形,然后判断是否在多边形内。
判断圆是否在多边形中
- 计算圆心到多边形每条边的最短距离,若距离均大于或等于半径,则圆在多边形内。
判断线段、折线、矩形、多边形是否在圆中
- 圆是凸集,只需判断所有顶点是否都在圆内。
- 判断条件:
对于每个顶点 P(x, y),满足:
(x - centerX)^2 + (y - centerY)^2 ≤ radius^2
判断圆是否在圆中
- 比较两圆的半径和圆心距离。
- 判断条件:
r1 ≥ r2
distance(center1, center2) ≤ r1 - r2
C++代码实现
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
// 二维点结构体
struct Point {
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
};
// 矩形结构体
struct Rectangle {
double minX, minY, maxX, maxY;
Rectangle(double minX, double minY, double maxX, double maxY)
: minX(minX), minY(minY), maxX(maxX), maxY(maxY) {}
};
// 圆结构体
struct Circle {
Point center;
double radius;
Circle(Point center, double radius) : center(center), radius(radius) {}
};
// 判断点是否在矩形内
bool isPointInRectangle(const Point& point, const Rectangle& rect) {
return (point.x >= rect.minX && point.x <= rect.maxX &&
point.y >= rect.minY && point.y <= rect.maxY);
}
// 判断矩形是否在矩形内
bool isRectangleInRectangle(const Rectangle& rect1, const Rectangle& rect2) {
return (rect1.minX >= rect2.minX && rect1.maxX <= rect2.maxX &&
rect1.minY >= rect2.minY && rect1.maxY <= rect2.maxY);
}
// 判断圆是否在矩形内
bool isCircleInRectangle(const Circle& circle, const Rectangle& rect) {
if (!isPointInRectangle(circle.center, rect)) return false;
double minDistance = min({
circle.center.x - rect.minX,
rect.maxX - circle.center.x,
circle.center.y - rect.minY,
rect.maxY - circle.center.y
});
return circle.radius <= minDistance;
}
// 判断点是否在多边形内(射线法)
bool isPointInPolygon(const Point& point, const vector<Point>& polygon) {
int n = polygon.size();
bool inside = false;
for (int i = 0, j = n - 1; i < n; j = i++) {
if (((polygon[i].y > point.y) != (polygon[j].y > point.y)) &&
(point.x < (polygon[j].x - polygon[i].x) * (point.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x))
inside = !inside;
}
return inside;
}
// 判断线段是否在多边形内
bool isSegmentInPolygon(const Point& p1, const Point& p2, const vector<Point>& polygon) {
if (!isPointInPolygon(p1, polygon) || !isPointInPolygon(p2, polygon)) return false;
// 判断线段与多边形边的交点(省略具体实现)
return true;
}
// 判断圆是否在多边形内
bool isCircleInPolygon(const Circle& circle, const vector<Point>& polygon) {
if (!isPointInPolygon(circle.center, polygon)) return false;
// 计算圆心到多边形每条边的最短距离(省略具体实现)
return true;
}
int main() {
// 测试点是否在矩形内
Rectangle rect(0, 0, 4, 4);
Point point(2, 2);
cout << "点是否在矩形内: " << isPointInRectangle(point, rect) << endl;
// 测试矩形是否在矩形内
Rectangle rect1(1, 1, 3, 3);
cout << "矩形是否在矩形内: " << isRectangleInRectangle(rect1, rect) << endl;
// 测试圆是否在矩形内
Circle circle(Point(2, 2), 1);
cout << "圆是否在矩形内: " << isCircleInRectangle(circle, rect) << endl;
// 测试点是否在多边形内
vector<Point> polygon = {{0, 0}, {4, 0}, {4, 4}, {0, 4}};
cout << "点是否在多边形内: " << isPointInPolygon(point, polygon) << endl;
return 0;
}
总结
本文详细讲解了GIS中几何对象的包含与交叉关系判断算法,包括线段、折线、多边形、矩形、圆等几何对象的判断方法,并提供了C++代码实现。这些算法是GIS空间分析的基础,掌握它们将为后续学习更复杂的GIS算法奠定坚实的基础。