用函数编程实现输出 m~n之间所有素数,并求和,m和n由键盘输入。素数是只能被1和自身整除的大于1的正整数。 要求程序能对用户输入的数据进行正确性检查,满足条件:m和n都是大于1的正整数,并且m<=n。
1. 要求编写函数InputNumber 实现用户输入一个正整数,并对数的合法性进行检查,如果读入不成功(例如:输入字符串),或者数不合法即不是大于1的正整数,则重新输入,直到输入正确为止。
函数原型:
unsigned int InputNumber(char ch);
形式参数:ch,用于生成输入提示信息。
返回值:返回正确的输入值。
输入提示信息:printf("Please input the number %c(>1):",ch);
输入格式:"%d"
输入错误提示信息:"The input must be an integer larger than 1!\n"
提示:测试scanf的返回值来判断是否成功读入数据。
2. 要求编写函数IsPrime判断自然数x是否为素数,如果x是素数则返回1,不是素数返回0。
函数原型:
int IsPrime(unsigned int n);
返回值:如果x是素数则返回1,不是素数返回0。
3. 要求编写函数PrimeSum 输出m到n之间所有素数并返回它们的和。
函数原型:
int PrimeSum(unsigned int m, unsigned int n);
返回值:m到n之间所有素数的和。
每个素数的输出格式:"%d\n"
主函数定义如下:
int main()
{
int m = 0,n = 0,sum = 0,i = 0;
do
{
m = InputNumber('m'); //实参‘m’只在输入提示时使用
n = InputNumber('n');
}while(m > n && printf("n must be not smaller than m! Input again!\n")); //保证m<=n
sum = PrimeSum(m,n);
printf("sum of prime numbers:%d",sum);
return 0;
}
运行实例:
Please input the number m(>1):abc
The input must be an integer larger than 1!
Please input the number m(>1):-34
The input must be an integer larger than 1!
Please input the number m(>1):56
Please input the number n(>1):23
n must be not smaller than m! Input again!
Please input the number m(>1):23
Please input the number n(>1):57
23
29
31
37
41
43
47
53
sum of prime numbers:304
#include <stdio.h>
unsigned int InputNumber(char ch);
int IsPrime(unsigned int n);
int PrimeSum(unsigned int m, unsigned int n);
int main()
{
int m = 0,n = 0,sum = 0,i = 0;
do
{
m = InputNumber('m');
n = InputNumber('n');
}while(m > n && printf("n must be not smaller than m! Input again!\n"));
sum = PrimeSum(m,n);
printf("sum of prime numbers:%d",sum);
return 0;
}
int PrimeSum(unsigned int m, unsigned int n)
{
int sum = 0,i;
for(i = m; i<= n; i++)
{
if(IsPrime(i))
{
printf("%d\n",i);
sum+= i;
}
}
return sum;
}
unsigned int InputNumber(char ch)
{
int n, in;
do
{
printf("Please input the number %c(>1):",ch);
in = scanf("%d",&n);
while(getchar()!='\n');
}while((in!=1 || n < 2) && printf("The input must be an integer larger than 1!\n") );
return n;
}
int IsPrime(unsigned int n)
{
int isPrime = 1,i;
for(i = 2; i < n; i++)
{
if(n%i==0)
{
isPrime = 0;
break;
}
}
return isPrime;
}