问题描述
小浩有一个大小为 N×NN×N 的国际象棋棋盘。
有 NN 个主教以之字形的形式放置在棋盘的矩阵上,坐标分别为 (1,1),(2,2),(1,3),(2,4),(1,5),…(1,1),(2,2),(1,3),(2,4),(1,5),…。
例如对于 N=4N=4,棋盘初始时为:
已知主教只能斜向移动且每次可以移动任意距离。
你的任务是找到最少的移
动次数,满足对于所有 1≤i≤N1≤i≤N,棋盘矩阵上的格子 (i,i)(i,i) 都被主教占领了。
对于 N=4N=4,最后的位置应该为:
解释说明:
样例 11:棋盘的主教一开始已经处于最终位置了。
样例 22: 我们最少需要 33 次移动:
- 将主教从 (2,2)(2,2) 移动到 (4,4)(4,4)。
- 将主教从 (1,3)(1,3) 移动到 (2,2)(2,2)。
- 将主教从 (2,4)(2,4) 移动到 (3,3)(3,3)。
样例 33:棋盘的主教一开始已经处于最终位置了。
解题思路:
1.将第二排所有的棋子都移动到最边缘。
2.分奇偶性来讨论第二排棋子的数量,如果N为偶数:第二排棋子的数量为2/N,但偶数时,第二排的最后一个棋子已经在边缘地区,不用移动,所以移动棋子的数量为2/(N-1)的取整,而其他棋子的移动次数为N-2,这个结果不包含第一排的第一个棋子和第二排最后一个棋子,其他的棋子都向斜前方移动即可,最终的公式为:(N-1)/2+N-2;如果N为奇数,可以发现第二排的棋子数量并且移动次数为2/(N-1),其他步骤也和偶数一样。所以最终的公式总结为(N-1)/2+N-2。
3.此外,我们还需要考虑N与1的关系,如果使用公式,我们需要分情况讨论,直接使用if-else语句来进行,当N>1的时候,使用公式输出。
方法示例:
以下是使用归纳总结之后的Python语言的实现:
T = int(input())
for i in range(T):
N = int(input())
if N > 1:
x = (N - 1) / 2 + N - 2
print(int(x))
else:
print("0")
评测数据规模
对于所有的评测数据,1≤T≤2×1051≤T≤2×105,1≤N≤1091≤N≤109。