小浩的国际象棋

问题描述

小浩有一个大小为 N×NN×N 的国际象棋棋盘。

有 NN 个主教以之字形的形式放置在棋盘的矩阵上,坐标分别为 (1,1),(2,2),(1,3),(2,4),(1,5),…​(1,1),(2,2),(1,3),(2,4),(1,5),…​。

例如对于 N=4​N=4​,棋盘初始时为:

已知主教只能斜向移动且每次可以移动任意距离。

你的任务是找到最少的移

动次数,满足对于所有 1≤i≤N1≤i≤N,棋盘矩阵上的格子 (i,i)​(i,i)​ 都被主教占领了。

对于 N=4​N=4​,最后的位置应该为:

解释说明:

样例 11:棋盘的主教一开始已经处于最终位置了。

样例 22: 我们最少需要 33 次移动:

  • 将主教从 (2,2)(2,2) 移动到 (4,4)(4,4)。
  • 将主教从 (1,3)(1,3) 移动到 (2,2)(2,2)。
  • 将主教从 (2,4)(2,4) 移动到 (3,3)(3,3)。

样例 3​3​:棋盘的主教一开始已经处于最终位置了。

解题思路:

1.将第二排所有的棋子都移动到最边缘。

2.分奇偶性来讨论第二排棋子的数量,如果N为偶数:第二排棋子的数量为2/N,但偶数时,第二排的最后一个棋子已经在边缘地区,不用移动,所以移动棋子的数量为2/(N-1)的取整,而其他棋子的移动次数为N-2,这个结果不包含第一排的第一个棋子和第二排最后一个棋子,其他的棋子都向斜前方移动即可,最终的公式为:(N-1)/2+N-2;如果N为奇数,可以发现第二排的棋子数量并且移动次数为2/(N-1),其他步骤也和偶数一样。所以最终的公式总结为(N-1)/2+N-2。

3.此外,我们还需要考虑N与1的关系,如果使用公式,我们需要分情况讨论,直接使用if-else语句来进行,当N>1的时候,使用公式输出。

方法示例:

以下是使用归纳总结之后的Python语言的实现:

T = int(input())
for i in range(T):
    N = int(input())
    if N > 1:
        x = (N - 1) / 2 + N - 2
        print(int(x))
    else:
        print("0")

评测数据规模

对于所有的评测数据,1≤T≤2×1051≤T≤2×105,1≤N≤1091≤N≤109。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值