VisionTransformer改进(4):集成SK模块

1.概述

在这篇博客中,我们将详细分析一个将Selective Kernel (SK)模块集成到Vision Transformer (ViT)模型中的PyTorch实现代码。

这个实现展示了如何通过添加注意力机制来增强标准ViT模型的性能。

代码结构

整个代码由三个主要部分组成:

  1. SKModule类 - 实现选择性核注意力机制
  2. get_model函数 - 构建集成了SK模块的ViT模型
  3. 主程序 - 演示模型的使用

SKModule详解

SKModule是实现选择性核注意力的核心部分:

class SKModule(nn.Module):
    def __init__(self, features, M=2, r=16):
        super().__init__()
        self.M = M  # 分支数量
        self.features = features  # 输入特征维度
        self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值