1.概述
在这篇博客中,我们将详细分析一个将Selective Kernel (SK)模块集成到Vision Transformer (ViT)模型中的PyTorch实现代码。
这个实现展示了如何通过添加注意力机制来增强标准ViT模型的性能。
代码结构
整个代码由三个主要部分组成:
- SKModule类 - 实现选择性核注意力机制
- get_model函数 - 构建集成了SK模块的ViT模型
- 主程序 - 演示模型的使用
SKModule详解
SKModule是实现选择性核注意力的核心部分:
class SKModule(nn.Module):
def __init__(self, features, M=2, r=16):
super().__init__()
self.M = M # 分支数量
self.features = features # 输入特征维度
self