一、引言
支持向量机(Support Vector Machine, SVM)作为一种经典的机器学习算法,自20世纪90年代由Vapnik等人提出以来,在模式识别和分类任务中表现出卓越的性能。
在深度学习兴起之前,SVM长期占据着图像分类领域的主导地位,即使在当今深度神经网络大行其道的时代,SVM仍因其理论完备性、小样本学习能力和良好的泛化性能而在特定场景下保持着不可替代的价值。
本文将从SVM的基本原理出发,系统阐述其在图像分类任务中的应用方法、关键技术、优化策略以及实际案例,全面展示这一传统分类模型在计算机视觉领域的独特优势和实用价值。
全文将分为以下几个部分:SVM基本原理回顾、图像分类问题概述、SVM在图像分类中的实现方法、性能优化策略、应用案例分析、与深度学习的对比及未来展望。
二、SVM基本原理回顾
2.1 统计学习理论与结构风险最小化
SVM建立在统计学习理论的基础上,遵循结构风险最小化(Structural Risk Minimization, SRM)原则,与传统的经验风险最小化(Empirical Risk Minimization, ERM)方法形成对比。
SRM通过