在计算机视觉领域,Transformer架构正逐渐取代传统的CNN成为主流。
本文将深入解析一个结合了Swin Transformer和Dual Cross-Attention(DCA)的创新模型实现。
模型概述
这个实现的核心是将Swin Transformer(一种高效的视觉Transformer)与创新的Dual Cross-Attention模块相结合,构建了一个强大的图像分类模型。主要特点包括:
- 基于Swin Transformer的骨干网络
- 创新的Dual Cross-Attention模块增强特征表示
- 灵活的分类头设计
核心组件解析
Dual Cross-Attention (DCA) 模块
DCA模块是本文实现的核心创新点,它同时考虑了通道注意力和空间注意力:
class DCA(nn.Module):
"""
Dual Cross-Attention (DCA) Module
"""
def __init__(self, in_p