SwinTransformer改进(6):与Dual Cross-Attention结合的视觉模型

在计算机视觉领域,Transformer架构正逐渐取代传统的CNN成为主流。

本文将深入解析一个结合了Swin Transformer和Dual Cross-Attention(DCA)的创新模型实现。

模型概述

这个实现的核心是将Swin Transformer(一种高效的视觉Transformer)与创新的Dual Cross-Attention模块相结合,构建了一个强大的图像分类模型。主要特点包括:

  1. 基于Swin Transformer的骨干网络
  2. 创新的Dual Cross-Attention模块增强特征表示
  3. 灵活的分类头设计

核心组件解析

Dual Cross-Attention (DCA) 模块

DCA模块是本文实现的核心创新点,它同时考虑了通道注意力和空间注意力:

class DCA(nn.Module):
    """
    Dual Cross-Attention (DCA) Module
    """
    def __init__(self, in_p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值