第30节:现代CNN架构-轻量级架构EfficientNet

1.轻量级CNN的发展背景

在深度学习领域,卷积神经网络(CNN)已经成为计算机视觉任务的主流架构。

随着模型复杂度的不断提升,如ResNet、Inception和DenseNet等模型在ImageNet等基准数据集上取得了令人瞩目的成绩,但这些模型往往伴随着巨大的计算成本和参数量,难以在资源受限的环境中部署。

这种背景下,轻量级CNN模型的研究变得尤为重要。移动设备、嵌入式系统和物联网设备的普及,对能够在有限计算资源下高效运行的神经网络提出了迫切需求。早期的轻量级模型如SqueezeNet、MobileNet和ShuffleNet等通过深度可分离卷积、通道混洗等技术在保持性能的同时大幅减少了计算量。

然而,这些模型的设计往往依赖于经验性探索和手工调整,缺乏系统性方法论。2019年,Google Research团队提出的EfficientNet通过复合缩放方法神经架构搜索(NAS)技术,实现了在计算资源、参数量和模型精度之间的最优平衡,成为轻量级CNN发展史上的里程碑。

2. EfficientNet的核心创新

2.1 复合缩放方法

传统CNN模型的缩放通常只考虑单一维度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值