第34节:迁移学习中的特征提取方法

迁移学习中的特征提取方法:原理、技术与应用

1. 迁移学习与特征提取概述

迁移学习(Transfer Learning)作为机器学习领域的重要范式

通过将源领域(source domain)学到的知识迁移到目标领域(target domain),有效解决了传统机器学习需要大量标注数据的瓶颈问题。

在迁移学习的多种技术路线中,特征提取方法(Feature Extraction Approach)因其高效性和实用性成为最广泛应用的技术之一。

特征提取方法的核心思想是:利用在源任务上预训练好的模型,提取输入数据的抽象特征表示,然后将这些特征用于目标任务的学习。

这种方法假设,尽管源任务和目标任务可能不同,但它们在底层特征表示上具有共享的语义信息。

例如,在ImageNet上训练的卷积神经网络(CNN)能够学习到通用的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值